美文网首页R语言
R随手小知识笔记

R随手小知识笔记

作者: 井底蛙蛙呱呱呱 | 来源:发表于2018-07-16 14:53 被阅读53次
1、R中如何实现Python中itertools.combinations的效果?

R中函数combn可实现类似的效果:

> s <- LETTERS[1:3]
> combn(s,2)
     [,1] [,2] [,3]
[1,] "A"  "A"  "B" 
[2,] "B"  "C"  "C"
# 最后进行一个转置便可以得到排列组合效果
> t(combn(s,2))
     [,1] [,2]
[1,] "A"  "B" 
[2,] "A"  "C" 
[3,] "B"  "C" 
2、R中如何实现将字符串转换为变量名,类似于python中的eval()函数效果?

在R中可以使用get()函数来达到相同的效果:

# 在这个例子中我们使用一个含列名的向量来进行遍历
> library(dplyr)
> s <- LETTERS[1:3]
> fac <- as.data.frame(t(combn(s,2)), stringsAsFactors=FALSE)
> str(fac)
'data.frame':   3 obs. of  2 variables:
 $ V1: chr  "A" "A" "B"
 $ V2: chr  "B" "C" "C"
> df <- as.data.frame(matrix(c(c(2,4,6),c(2,6,8),c(3,4,6),c(3,3,3)),nrow=4))
> colnames(df) <- c('A','B','C')
> df
  A B C
1 2 6 6
2 4 8 3
3 6 3 3
4 2 4 3
# 最后进行过滤,挑选一行中所有列都是偶数的行来
> for (n in 1:ncol(fac)){
+     for(arg in as.vector(fac[n,])){
+         print(arg)
+         df <- dplyr::filter(df, get(arg)%%2==0)
+         print(df)
+     }
+ }
[1] "A"
  A B C
1 2 6 6
2 4 8 3
3 6 3 3
4 2 4 3
[1] "B"
  A B C
1 2 6 6
2 4 8 3
3 2 4 3
[1] "A"
  A B C
1 2 6 6
2 4 8 3
3 2 4 3
[1] "C"
  A B C
1 2 6 6

上面的若不使用get()函数则会报错Evaluation error: non-numeric argument to binary operator.,因为此时arg就是字符串,无法与2进行运算。

3、如何将list转化为向量(vector)?

使用as.vector(unlist(my_list))

> df<- data.frame(v1=c(1,2,3),v2=c(2,8,9),v3=c(1,2,5))
> a <- as.vector(unlist(df[1,]))
> a
[1] 1 2 1
> df[a]
  v1 v2 v1.1
1  1  2    1
2  2  8    2
3  3  9    3
4、如何合并多个数据框

在R中可以使用purrr包中的reduce函数:

library(dplyr)
x <- data_frame(i = c("a","b","c"), j = 1:3)
y <- data_frame(i = c("b","c","d"), k = 4:6)
z <- data_frame(i = c("c","d","a"), l = 7:9)

list(x, y, z) %>% reduce(full_join, by = "i")
# A tibble: 4 x 4
# i         j     k     l
# <chr> <int> <int> <int>
#   1 a         1    NA     9
# 2 b         2     4    NA
# 3 c         3     5     7
# 4 d        NA     6     8

list(x, y, z) %>% reduce(inner_join, by = "i")
# A tibble: 1 x 4
# i         j     k     l
# <chr> <int> <int> <int>
#   1 c         3     5     7

在python中同样的使用reduce函数可以达到相同的效果:

import pandas as pd
from functools import reduce

df1 = pd.read_table('file1.csv', sep=',')
df2 = pd.read_table('file2.csv', sep=',')
df3 = pd.read_table('file3.csv', sep=',')

# compile the list of dataframes you want to merge
data_frames = [df1, df2, df3]
df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'], how='outer'), data_frames)

相关文章

网友评论

    本文标题:R随手小知识笔记

    本文链接:https://www.haomeiwen.com/subject/rtovpftx.html