1. 概述
业务发展到一定程度,分库分表是一种必然的要求,分库可以实现资源隔离,分表则可以降低单表数据量,提高访问效率。
分库分表的技术方案,很久以来都有两种理念:
-
集中式的Proxy,实现MySQL客户端协议,使用户无感知
-
分布式的Proxy,在代码层面进行增强,实现一个路由程序
这两种方式是各有利弊的,集中式Proxy的好处是业务没有感知,一切交给DBA把控,分布式的Proxy其支持的语言有限,比如本文要提及的ShardingShpere-JDBC就只支持Java。
我们需要了解一点,集中式的Proxy其实现非常复杂,这要从MySQL处理SQL语句的原理说起,因为不是本文要论述的重点,因此只是简单的提及几点:
- SQL语句要被Parser解析成抽象语法树
- SQL要被优化器解析出执行计划
- SQL语句完成解析后,发给存储引擎
因此大部分的中间件都选择了自己实现SQL的解析器和查询优化器,下面是著名的中间件dble的实现示意图:
dble示意图只要有解析的过程,其性能损耗就是比较可观的,我们也可以认为这是一种重量级的解决方案。
与之形成对比的是ShardingSphere-JDBC,其原理示意图如下:
sharding-jdbc每一个服务都持有一个Sharing-JDBC,这个JDBC以Jar包的形式提供,基本上可以认为是一个增强版的jdbc驱动,需要一些分库分表的配置,业务开发人员不需要去对代码进行任何的修改。可以很轻松的移植到SpringBoot,ORM等框架上。
但是这个中结构也不是完美的,每一个服务持有一个proxy意味着会在MySQL服务端新建大量的连接,维持连接会增加MySQL服务器的负载,虽然这种负载提升一般无法察觉。
关于ShardingSphere的详细知识,我们可以参考其官方文档,地址如下:
2. 编码实现
要分库分表首先需要有不同的数据源,我们启动两个mysqld进行,监听3306和3307两个端口,以多实例的形式模拟多数据源。
我们的分库是以用户ID为依据的,分表是以表本身的主键为依据的。下面是一张示意表:
-- 注意,这是逻辑表,实际不存在
create table t_order
(
order_id bigint not null auto_increment primary key,
user_id bigint not null,
name varchar(100)
);
CREATE TABLE `t_order_item` (
`order_id` bigint(20) NOT NULL,
`item` varchar(100) DEFAULT NULL,
`user_id` bigint(20) NOT NULL,
PRIMARY KEY (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
我现在有两个数据源,每个数据源上根据order_id分成2两表,也就是说每个实例上都应该有这两张表:
create table t_order0
(
order_id bigint not null auto_increment primary key,
user_id bigint not null,
name varchar(100)
);
create table t_order1
(
order_id bigint not null auto_increment primary key,
user_id bigint not null,
name varchar(100)
);
-- 这是广播表,新建在其中一个节点上就可以
CREATE TABLE `t_config` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` bigint(20) DEFAULT NULL,
`config` varchar(100) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
CREATE TABLE `t_order_item0` (
`order_id` bigint(20) NOT NULL,
`item` varchar(100) DEFAULT NULL,
`user_id` bigint(20) NOT NULL,
PRIMARY KEY (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `t_order_item1` (
`order_id` bigint(20) NOT NULL,
`item` varchar(100) DEFAULT NULL,
`user_id` bigint(20) NOT NULL,
PRIMARY KEY (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
作为一个DBA,不能在公司需要你的时候顶上去做一个Java程序员,是可耻的的,因此我会Java。
利用SpringBoot技术可以很快的构建一个RESTful的Web服务,下面是application.properties的内容:
# 这里要注册所有的数据源
spring.shardingsphere.datasource.names=ds0,ds1
# 这是数据源0的配置
spring.shardingsphere.datasource.ds0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds0.jdbc-url=jdbc:mysql://localhost:3306/test?serverTimezone=GMT%2B8
spring.shardingsphere.datasource.ds0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds0.username=root
spring.shardingsphere.datasource.ds0.password=
# 这是数据源1的配置
spring.shardingsphere.datasource.ds1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.jdbc-url=jdbc:mysql://localhost:3307/test?serverTimezone=GMT%2B8
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds1.username=root
spring.shardingsphere.datasource.ds1.password=
# 分库策略
# 分库的列是user_id
spring.shardingsphere.sharding.default-database-strategy.standard.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.standard.precise-algorithm-class-name=com.sinosun.demo.sharding.PreciseShardingAlgorithmImpl
# 分表策略
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds$->{0..1}.t_order$->{0..1}
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression=t_order$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds$->{0..1}.t_order_item$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item$->{order_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order, t_order_item
# 广播表, 其主节点是ds0
spring.shardingsphere.sharding.broadcast-tables=t_config
spring.shardingsphere.sharding.tables.t_config.actual-data-nodes=ds$->{0}.t_config
spring.jpa.show-sql=true
server.address=10.1.20.96
server.port=8080
这是buid.gradle内容,只列举ShardingSphere相关的,至于SpringBoot工程如何构建,参考SpringBoot的书籍或者资料:
dependencies {
compile group: 'org.apache.shardingsphere', name: 'sharding-jdbc-spring-boot-starter', version: '4.0.0-RC1'
compile group: 'org.apache.shardingsphere', name: 'sharding-jdbc-spring-namespace', version: '4.0.0-RC1'
}
下图是工程的代码结构,供参考:
工程结构现在开始列举代码:
Entity是最简单的部分:
package com.example.demo.entity;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;
import java.util.StringJoiner;
@Entity
@Table(name = "t_order")
public class Order {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private long orderId;
@Column(name = "user_id")
private long userId;
@Column(name = "name")
private String name;
public long getOrderId() {
return orderId;
}
public void setOrderId(long orderId) {
this.orderId = orderId;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public long getUserId() {
return userId;
}
public void setUserId(long userId) {
this.userId = userId;
}
@Override
public String toString() {
return new StringJoiner(", ", Order.class.getSimpleName() + "[", "]")
.add("orderId=" + orderId)
.add("userId=" + userId)
.add("name='" + name + "'")
.toString();
}
}
package com.example.demo.entity;
import com.google.common.base.MoreObjects;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity
@Table(name = "t_order_item")
public class OrderItem {
@Id
@Column(name = "order_id")
private long orderId;
@Column(name = "user_id")
private long userId;
@Column(name = "item")
private String item;
public long getOrderId() {
return orderId;
}
public void setOrderId(long orderId) {
this.orderId = orderId;
}
public long getUserId() {
return userId;
}
public void setUserId(long userId) {
this.userId = userId;
}
public String getItem() {
return item;
}
public void setItem(String item) {
this.item = item;
}
@Override
public String toString() {
return MoreObjects.toStringHelper(this)
.add("orderId", orderId)
.add("userId", userId)
.add("item", item)
.toString();
}
}
package com.example.demo.entity;
import com.google.common.base.MoreObjects;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity
@Table(name = "t_config")
public class TConfig {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private int id;
@Column(name = "user_id")
private long userId;
@Column(name = "config")
private String config;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public long getUserId() {
return userId;
}
public void setUserId(long userId) {
this.userId = userId;
}
public String getConfig() {
return config;
}
public void setConfig(String config) {
this.config = config;
}
@Override
public String toString() {
return MoreObjects.toStringHelper(this)
.add("id", id)
.add("userId", userId)
.add("config", config)
.toString();
}
}
Dao层的实现,有了SpringBoot以后连代码都不需要怎么写了,声明一个接口就可以了:
package com.example.demo.dao;
import com.example.demo.entity.Order;
import org.springframework.data.jpa.repository.JpaRepository;
public interface OrderDao extends JpaRepository<Order, Long> {
}
这里我利用了Query注解,写了一条HQL语句:
package com.example.demo.dao;
import com.example.demo.entity.OrderItem;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.data.repository.query.Param;
import java.util.Optional;
public interface OrderItemDao extends JpaRepository<OrderItem, Long> {
//为了测试绑定表
@Query(value = "select n from Order t inner join OrderItem n on t.orderId = n.orderId where n.orderId=:orderId")
Optional<OrderItem> getOrderItemByOrderId(@Param("orderId") Long orderId);
}
package com.example.demo.dao;
import com.sinosun.demo.entity.TConfig;
import org.springframework.data.jpa.repository.JpaRepository;
public interface ConfigDao extends JpaRepository<TConfig, Integer> {
}
Controller层具体实现:
package com.example.demo.controller;
import com.example.demo.dao.OrderDao;
import com.example.demo.entity.Order;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.Optional;
@RestController
public class OrderController {
@Autowired
private OrderDao orderDao;
@RequestMapping(value = "/order", method = RequestMethod.GET)
public Optional<Order> getOrderById(@RequestParam("id") Long id) {
return this.orderDao.findById(id);
}
@RequestMapping(value = "/order/save", method = RequestMethod.POST)
public Order saveOrder(@RequestParam("name") String name, @RequestParam("userid") Long userId) {
Order order = new Order();
order.setName(name);
order.setUserId(userId);
return this.orderDao.save(order);
}
}
package com.example.demo.controller;
import com.example.demo.dao.OrderItemDao;
import com.example.demo.entity.OrderItem;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.Optional;
@RestController
public class OrderItemController {
@Autowired
private OrderItemDao orderItemDao;
@RequestMapping(value = "/orderItem", method = RequestMethod.GET)
public Optional<OrderItem> getOrderItemById(@RequestParam(name = "id") Long id) {
return this.orderItemDao.findById(id);
}
@RequestMapping(value = "/orderItem/save", method = RequestMethod.POST)
public OrderItem saveOrderItem(@RequestParam("item") String item, @RequestParam("userid") Long userId, @RequestParam("orderid") Long orderId) {
OrderItem orderItem = new OrderItem();
orderItem.setUserId(userId);
orderItem.setItem(item);
orderItem.setOrderId(orderId);
return this.orderItemDao.save(orderItem);
}
@RequestMapping(value = "/orderItem/query", method = RequestMethod.GET)
public Optional<OrderItem> getOrderItemByOrderId(@RequestParam(name = "orderid") Long orderId) {
return this.orderItemDao.getOrderItemByOrderId(orderId);
}
}
package com.example.demo.controller;
import com.example.demo.dao.ConfigDao;
import com.example.demo.entity.TConfig;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
@RestController
public class ConfigController {
@Autowired
private ConfigDao configDao;
@RequestMapping(value = "/listConfig", method = RequestMethod.GET)
public List<TConfig> getConfig() {
return this.configDao.findAll();
}
}
这三段代码写完基本的功能就完备了,但是刚才配置的时候提过,我们的目的是按照user_id进行分库,比如user_id=0则分配这条数据到ds0去,如果为1则将数据分配到ds1去,这就要求我们自己实现分库的算法,ShardingSphere提供了接口,只需要去实现就可以了:
package com.example.demo.sharding;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import java.util.Collection;
public class PreciseShardingAlgorithmImpl implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
String dbName = "ds";
Long val = shardingValue.getValue();
dbName += val;
for (String each : availableTargetNames) {
if (each.equals(dbName)) {
return each;
}
}
throw new IllegalArgumentException();
}
}
这段代码很简单,其中有几个地方只需要讲明白了就可以。
-
availableTargetNames:这是datasource的名字列表,在这里应该是ds0和ds1;
-
shardingValue:这是分片列的值,我们只要其value部分就可以。
之后用一个循环遍历["ds0", "ds1"]集合,当我们的dbName和其中一个相等时,就能的到正确的数据源。这就简单的实现了根据user_id精确分配数据的目的。
这是实测例子中,shardingValue和availableTargetNames的实际值:
细节本次测试的请求是:
curl -X POST \
'http://10.1.20.96:8080/order/save?name=LiLei&userid=0' \
-H 'Postman-Token: d5e15e85-c760-4252-a7d4-ef57b5e95c2e' \
-H 'cache-control: no-cache'
下面看看实际效果,这是ds0的数据:
数据源0结果这是ds1的数据:
数据源1结果可以看到,所有的数据都根据user_id分布到了不同的库中,所有的数据都根据order_id的奇偶分布到了不同的表中。
记录下保存t_order请求返回的order_id,组装一条POST请求写t_order_item表:
curl -X POST \
'http://10.1.20.96:8080/orderItem/save?item=pen&userid=0&orderid=371698107924086785' \
-H 'Accept: */*' \
-H 'Cache-Control: no-cache' \
-H 'Connection: keep-alive' \
-H 'Host: 10.1.20.96:8080' \
-H 'Postman-Token: 347b6c4d-0e2c-474f-b53e-6f0994db5871,24b362da-e77e-4b04-94e1-fa20dcb15845' \
-H 'User-Agent: PostmanRuntime/7.15.0' \
-H 'accept-encoding: gzip, deflate' \
-H 'cache-control: no-cache' \
-H 'content-length: '
得到结果如下:
POST结果使用这个order_id去进行联合查询:
curl -X GET \
'http://10.1.20.96:8080/orderItem/query?orderid=371698107924086785' \
-H 'Accept: */*' \
-H 'Cache-Control: no-cache' \
-H 'Connection: keep-alive' \
-H 'Host: 10.1.20.96:8080' \
-H 'Postman-Token: d0da0523-d46e-429f-a8db-9f844cd77fe6,b61c6089-253d-4535-b473-158c037850be' \
-H 'User-Agent: PostmanRuntime/7.15.0' \
-H 'accept-encoding: gzip, deflate' \
-H 'cache-control: no-cache'
得到返回如下:
查询结果测试广播表,可以用下面的请求:
curl -X GET \
http://10.1.20.96:8080/listConfig \
-H 'Accept: */*' \
-H 'Cache-Control: no-cache' \
-H 'Connection: keep-alive' \
-H 'Host: 10.1.20.96:8080' \
-H 'Postman-Token: 1c9d0349-4b6d-4a2c-834f-4e2f94194649,3dff68f4-2e10-4e96-926a-344faa5f0a19' \
-H 'User-Agent: PostmanRuntime/7.15.0' \
-H 'accept-encoding: gzip, deflate' \
-H 'cache-control: no-cache'
得到的结果:
广播表的查询结果这只是简单地实现了分库分表,但是任何分库分表集群都很复杂,必然包括分库分表,读写分离还有配置中心分发。这些我基本都验证了,后面再详细记录。
网友评论