美文网首页
ACID&CAP&BASE

ACID&CAP&BASE

作者: 追猫的狗 | 来源:发表于2019-03-20 11:32 被阅读0次

    计算机系统从集中式向分布式的变革随着包括分布式网络、分布式事务和分布式数据一致性等在内的一系列问题与挑战,同时也催生了一大批诸如ACID、CAP和BASE等经典理论的快速发展。

    ACID

    指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。一个支持事务(Transaction)的数据库,必须要具有这四种特性,否则在事务过程(Transaction processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。

    ● 原子性(A)

    整个事务中的所有操作,要么全部完成,要么全部不完成,不可能停滞在中间某个环节。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。

    ● 一致性(C)

    一个事务可以封装状态改变(除非它是一个只读的)。事务必须始终保持系统处于一致的状态,不管在任何给定的时间并发事务有多少。

    ● 隔离性(I)

    隔离状态执行事务,使它们好像是系统在给定时间内执行的唯一操作。如果有两个事务,运行在相同的时间内,执行相同的功能,事务的隔离性将确保每一事务在系统中认为只有该事务在使用系统。这种属性有时称为串行化,为了防止事务操作间的混淆,必须串行化或序列化请求,使得在同一时间仅有一个请求用于同一数据。

    ● 持久性(D)

    在事务完成以后,该事务对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。

    目前主要有两种方式实现ACID:第一种是Write ahead logging,也就是日志式的方式(现代数据库均基于这种方式)。第二种是Shadow paging。

    相对于WAL(write ahead logging)技术,shadow paging技术实现起来比较简单,消除了写日志记录的开销恢复的速度也快(不需要redo和undo)。shadow paging的缺点就是事务提交时要输出多个块,这使得提交的开销很大,而且以块为单位,很难应用到允许多个事务并发执行的情况——这是它致命的缺点。

    WAL 的中心思想是对数据文件 的修改(它们是表和索引的载体)必须是只能发生在这些修改已经 记录了日志之后 -- 也就是说,在日志记录冲刷到永久存储器之后. 如果我们遵循这个过程,那么我们就不需要在每次事务提交的时候 都把数据页冲刷到磁盘,因为我们知道在出现崩溃的情况下, 我们可以用日志来恢复数据库:任何尚未附加到数据页的记录 都将先从日志记录中重做(这叫向前滚动恢复,也叫做 REDO) 然后那些未提交的事务做的修改将被从数据页中删除 (这叫向后滚动恢复 - UNDO)。

    CAP

    在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性)三者不可兼得

    ● 一致性(C)

    在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)

    ● 可用性(A)

    在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)

    ● 分区容错性(P)

    以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。

    CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容错性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡没有NoSQL系统能同时保证这三点

    BASE

    Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的简写.

    BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。

    ● 基本可用(BA)

    假设系统,出现了不可预知的故障,但还是能用,相比较正常的系统而言:

    1. 响应时间上的损失:正常情况下的搜索引擎 0.5 秒即返回给用户结果,而基本可用的搜索引擎可以在 1 秒作用返回结果。

    2. 功能上的损失:在一个电商网站上,正常情况下,用户可以顺利完成每一笔订单,但是到了大促期间,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。

    ● 软状态(S)

    相对于原子性而言,要求多个节点的数据副本都是一致的,这是一种 “硬状态”。

    软状态指的是:允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时。

    ● 最终一致性(E)

    软状态,然后不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性。从而达到数据的最终一致性。这个时间期限取决于网络延时,系统负载,数据复制方案设计等等因素。

    系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问最终都能够获取到最新的值。

    最终一致性分为 5 种:

    1. 因果一致性(Causal consistency)

    指的是:如果节点 A 在更新完某个数据后通知了节点 B,那么节点 B 之后对该数据的访问和修改都是基于 A 更新后的值。于此同时,和节点 A 无因果关系的节点 C 的数据访问则没有这样的限制。

    2. 读己之所写(Read your writes)

    这种就很简单了,节点 A 更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。其实也算一种因果一致性。

    3. 会话一致性(Session consistency)

    会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现 “读己之所写” 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。

    4. 单调读一致性(Monotonic read consistency)

    单调读一致性是指如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。

    5. 单调写一致性(Monotonic write consistency)

    指一个系统要能够保证来自同一个节点的写操作被顺序的执行。

    然而,在实际的实践中,这 5 种系统往往会结合使用,以构建一个具有最终一致性的分布式系统。实际上,不只是分布式系统使用最终一致性,关系型数据库在某个功能上,也是使用最终一致性的,比如备份,数据库的复制过程是需要时间的,这个复制过程中,业务读取到的值就是旧的。当然,最终还是达成了数据一致性。这也算是一个最终一致性的经典案例。

    BASE 理论面向的是大型高可用可扩展的分布式系统,和传统事务的 ACID 是相反的,它完全不同于 ACID 的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间是不一致的。

    相关文章

      网友评论

          本文标题:ACID&CAP&BASE

          本文链接:https://www.haomeiwen.com/subject/rwhzmqtx.html