美文网首页
7.opengl光照-颜色/基础光照

7.opengl光照-颜色/基础光照

作者: 天叔 | 来源:发表于2020-06-12 23:09 被阅读0次

glEnableVertexAttribArray的作用解释:

默认情况下,出于性能考虑,所有顶点着色器的属性(Attribute)变量都是关闭的,意味着数据在着色器端是不可见的,哪怕数据已经上传到GPU,由glEnableVertexAttribArray启用指定属性,才可在顶点着色器中访问逐顶点的属性数据。

glVertexAttribPointer或VBO只是建立CPU和GPU之间的逻辑连接,从而实现了CPU数据上传至GPU。但是,数据在GPU端是否可见,即,着色器能否读取到数据,由是否启用了对应的属性决定,这就是glEnableVertexAttribArray的功能,允许顶点着色器读取GPU(服务器端)数据。

那么,glEnableVertexAttribArray应该在glVertexAttribPointer之前还是之后调用?答案是都可以,只要在绘图调用(glDraw*系列函数)前调用即可。

理论介绍:光照模型有很多种,这里介绍使用冯氏光照模型 冯氏光照模型

  1. 环境光照简单的处理复杂的光反射整体环境,用一个系数代替,比如0.1
  2. 漫反射,漫反射和 入射角、法线有关。注意:漫反射和观察视角无关。
  3. 镜面反射,与观察视角、反射角有关。注意:镜面反射有个反光度系数,反光度越高,反射越集中,会形成一个高光。
    详细理论参考基础光照,或《计算机视觉基础-14章-视觉内容合成-p232》

实现效果: 光照效果

和教程上实现的有些区别,可能是位置没有调整好: 教程实现

代码:

  1. 代码目录: 代码没记录
  2. 顶点着色器和片元着色器实现(有两套着色器,灯光着色器实现不变,比较简单)
    colors.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out vec3 FragPos;
out vec3 Normal;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(model))) * aNormal;
    
    gl_Position = projection * view * vec4(FragPos, 1.0);
}

colors.fs

#version 330 core
out vec4 FragColor;

in vec3 Normal;
in vec3 FragPos;

uniform vec3 lightPos;
uniform vec3 viewPos;
uniform vec3 objectColor;
uniform vec3 lightColor;

void main()
{
    // 环境光照
    float ambientStrength = 0.1;
    vec3 ambient = ambientStrength * lightColor;
    
    // 漫反射
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = diff * lightColor;
    
    // 镜面反射
    float specularStrength = 0.5;
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
    vec3 specular = specularStrength * spec * lightColor;
    
    vec3 result = (ambient + diffuse) * objectColor;
    FragColor = vec4(result, 1.0);
}

  1. 主程序代码
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include "Shader.h"
#include "camera.h"

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 6.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

// timeing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

int main()
{
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    
#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
    
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if(window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);
    
    // tell GLFW to capture our mouse
    // 这一行,不注释也是ok的,隐藏鼠标
//    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
    
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }
    
    glEnable(GL_DEPTH_TEST);
    
    Shader lightingShader("1.colors.vs", "1.colors.fs");
    Shader lightCubeShader("1.light_cube.vs", "1.light_cube.fs");
    
    float vertices[] = {
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
         0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
    };
    
    unsigned int VBO, cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &VBO);
    
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    
    glBindVertexArray(cubeVAO);
    
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);
    
    unsigned int  lightCubeVAO;
    glGenVertexArrays(1, &lightCubeVAO);
    glBindVertexArray(lightCubeVAO);
    
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6*sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    
    while (!glfwWindowShouldClose(window)) {
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;
        
        //input
        processInput(window);
        
        //render
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        
        lightingShader.use();
        lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
        lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
        lightingShader.setVec3("lightPos", lightPos);
        lightingShader.setVec3("viewPos", camera.Position);
        
        //view/projection transformations
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH/(float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        lightingShader.setMat4("projection", projection);
        lightingShader.setMat4("view", view);
        
        glm::mat4 model = glm::mat4(1.0f);
        model = glm::rotate(model, glm::radians(45.0f), glm::vec3(0.5, 1.0f, 0.0f));
        lightingShader.setMat4("model", model);
        
        //render the cube
        glBindVertexArray(cubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);
        
        // also draw the lamp object
        lightCubeShader.use();
        lightCubeShader.setMat4("projection", projection);
        lightCubeShader.setMat4("view", view);
        model = glm::mat4(1.0f);
        model = glm::translate(model, lightPos);
        model = glm::scale(model, glm::vec3(0.2f));
        lightCubeShader.setMat4("model", model);
        
        glBindVertexArray(lightCubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);
        
        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &lightCubeVAO);
    glDeleteBuffers(1, &VBO);
    
    glfwTerminate();
    return 0;
}

void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
    {
        glfwSetWindowShouldClose(window, true);
    }
    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
    {
        camera.ProcessKeyboard(FORWARD, deltaTime);
    }
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
    {
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    }
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
    {
        camera.ProcessKeyboard(LEFT, deltaTime);
    }
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
    {
        camera.ProcessKeyboard(RIGHT, deltaTime);
    }

}

void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    glViewport(0, 0, width, height);
}

void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }
    
    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos;
    
    lastX = xpos;
    lastY = ypos;
    
    camera.ProcessMouseMovement(xoffset, yoffset);
}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(yoffset);
}

相关文章

  • 7.opengl光照-颜色/基础光照

    glEnableVertexAttribArray的作用解释:默认情况下,出于性能考虑,所有顶点着色器的属性(At...

  • 光照-02.光照基础

    现实世界的光照是极其复杂的,而且会受到诸多因素的影响,这是以目前我们所拥有的处理能力无法模拟的。因此OpenGL的...

  • OpenGL ES 光照计算

    光照基础 1.环境光照(ambient) 2.漫反射光照(diffuse) 3.镜面光照(specular) 光照...

  • OpenGL ES光照计算

    光照基础 环境光照:利用环境光可以描述一块区域的亮度,通常在场景中,环境光的颜色是一个常量 漫反射光照:光线向所有...

  • OpenGLES5-光照

    光照基础 环境光照 漫反射光照 镜面光照 光照特性 材质属性 泛射材质 漫反射材质 镜面反射材质 发射材质 光照计...

  • 光照-01.颜色

    颜色 在前面的教程中我们已经简要提到过该如何在OpenGL中使用颜色(Color),但是我们至今所接触到的都是很浅...

  • 光照模型

    漫反射模型 Lambert光照模型 : 漫反射=光照颜色 * max(0,cos(光照方向•模型法线方向)) di...

  • 基础篇-光照

    Light(光照) 在真实场景中,一般存在两种类型的光照效果:直接光源和间接光源。 直接光源:顾名思义,就是光直接...

  • LearnOpenGL 基础光照

    光照-冯氏光照模型 环境 ambient 漫反射 diffuse 镜面反射 specular 环境光照(Ambie...

  • OpenGL 光照基础

    颜色与光照的关系 我们看到的物体的颜色,实际是光照射物体后发射的光进入眼睛后感受到的颜色,而不是物体实际材料的颜色...

网友评论

      本文标题:7.opengl光照-颜色/基础光照

      本文链接:https://www.haomeiwen.com/subject/rwjotktx.html