1238 Circular Permutation in Binary Representation 循环码排列
Description:
Given 2 integers n and start. Your task is return any permutation p of (0,1,2.....,2^n -1) such that :
p[0] = start
p[i] and p[i+1] differ by only one bit in their binary representation.
p[0] and p[2^n -1] must also differ by only one bit in their binary representation.
Example:
Example 1:
Input: n = 2, start = 3
Output: [3,2,0,1]
Explanation: The binary representation of the permutation is (11,10,00,01).
All the adjacent element differ by one bit. Another valid permutation is [3,1,0,2]
Example 2:
Input: n = 3, start = 2
Output: [2,6,7,5,4,0,1,3]
Explanation: The binary representation of the permutation is (010,110,111,101,100,000,001,011).
Constraints:
1 <= n <= 16
0 <= start < 2 ^ n
题目描述:
给你两个整数 n 和 start。你的任务是返回任意 (0,1,2,,...,2^n-1) 的排列 p,并且满足:
p[0] = start
p[i] 和 p[i+1] 的二进制表示形式只有一位不同
p[0] 和 p[2^n -1] 的二进制表示形式也只有一位不同
示例:
示例 1:
输入:n = 2, start = 3
输出:[3,2,0,1]
解释:这个排列的二进制表示是 (11,10,00,01)
所有的相邻元素都有一位是不同的,另一个有效的排列是 [3,1,0,2]
示例 2:
输出:n = 3, start = 2
输出:[2,6,7,5,4,0,1,3]
解释:这个排列的二进制表示是 (010,110,111,101,100,000,001,011)
提示:
1 <= n <= 16
0 <= start < 2^n
思路:
格雷码
参考LeetCode #89 Gray Code 格雷编码 - 简书 (jianshu.com)
核心公式: start ^ i ^ (i >> 1)
时间复杂度为 O(2 ^ n), 空间复杂度为 O(1)
代码:
C++:
class Solution
{
public:
vector<int> circularPermutation(int n, int start)
{
vector<int> result(1 << n);
for (int i = 0; i < (1 << n); i++) result[i] = (start ^ i ^ (i >> 1));
return result;
}
};
Java:
class Solution {
public List<Integer> circularPermutation(int n, int start) {
List<Integer> result = new ArrayList<>(1 << n);
for (int i = 0; i < (1 << n); i++) result.add(start ^ i ^ (i >> 1));
return result;
}
}
Python:
class Solution:
def circularPermutation(self, n: int, start: int) -> List[int]:
return [start ^ i ^ (i >> 1) for i in range(2 ** n)]
网友评论