Handler

作者: 超人TIGA | 来源:发表于2020-12-14 14:20 被阅读0次

学android的都知道,handler的作用,就是线程间通讯,其中最经常做的,就是在其他线程发个通知,给UI线程来更新界面。这里就来分析一下是如何做到了。

怎么用handler
class HandlerDemo:AppCompatActivity(){

    private val innerHandler = InnerHandler(this)

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        innerHandler.sendEmptyMessageDelayed(1,3000)
    }

    private class InnerHandler(activity: Activity) : Handler() {
        private val activityWeakReference: WeakReference<Activity>?

        init {
            activityWeakReference = WeakReference(activity)
        }

        override fun handleMessage(msg: Message) {
            super.handleMessage(msg)
            if (null != activityWeakReference) {
                val activity = activityWeakReference.get()
                when(msg.what){
                    1->{
                        Toast.makeText(activity,"handler!",Toast.LENGTH_SHORT).show()
                    }
                }
            }
        }
    }
}

完整的用法就是这样,发送和接收message。
先来看看系统是怎么发的,发的方法有很多种,sendMessage、sendEmptyMessage、sendEmptyMessageDelayed、sendEmptyMessageAtTime等,先查看代码:

    public final boolean sendMessage(@NonNull Message msg) {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendEmptyMessage(int what)
    {
        return sendEmptyMessageDelayed(what, 0);
    }

    public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }

    public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageAtTime(msg, uptimeMillis);
    }

    public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

可以发现,其实所有的方法,到最后,都是调用sendMessageAtTime,在sendMessageAtTime中,进行enqueueMessage(queue, msg, uptimeMillis),就是将我们创建的message,放到一个类型为MessageQueue的对象中。先继续看enqueueMessage(queue, msg, uptimeMillis)

    private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
        msg.target = this;//使得message持有handler的引用
        msg.workSourceUid = ThreadLocalWorkSource.getUid();

        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

这里重要的有2个地方,msg.target = this和queue.enqueueMessage(msg, uptimeMillis),第一个的作用就是使得每一个我们创建的message都持有handler的引用,用于处理message时,找回对应的handler。而enqueueMessage方法,就是把message放到MessageQueue链表中。

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;//设置message中的延迟时间
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {//新的message触发时间,在MessageQueue中是最快的
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                //根据延迟时间遍历链表,将新的message,按照触发时间的顺序排列好
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

到这里发送的全部逻辑就完成了。接下来看接收处理的逻辑。但是接收处理的代码,在上面的例子中,是我们自己实现的handleMessage方法,这已经得到了message,并不是我们要找的原理部分,那实际的逻辑在哪里?是在Looper中。

    public static void loop() {
        final Looper me = myLooper();
        ...
        final MessageQueue queue = me.mQueue;
        ...
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ...
            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            ...
            msg.recycleUnchecked();
        }
    }

这里的loop方法,就是Looper的无限循环,不停从MessageQueue中获取写一个message(queue.next),那我们接着看MessageQueue的next()方法。


    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

代码很多,其实这里主要搞清楚的就是,next方法就是从MessageQueue中取出下一个message,如果已经没有消息的,就进行睡眠。

发送和接收的过程和原理都清楚了,但是上面提到的Looper和MessageQueue我们还不清楚

这两个东西,在整个handler的使用过程中,我们都没有创建过,但是很明显这两个都很重要,那我们先来看它们是啥时候创建的。

public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

接着看

    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

完了?原来就是ThreadLocal.get()就能得到了?那ThreadLocal又是啥时候新建的。这就要看Looper的prepare方法了。

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

能看到,prepare的时候,new了一个Looper,然后放到ThreadLocal中,而ThreadLocal里有一个HashMap。

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

每一个线程都有一个ThreadLocalMap,拿出来,然后把Looper对象set进去。而且key还是每个线程的本身,所以,每个线程只能对应一个Looper。那MessageQueue呢?

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

Looper的构造方法,就new了一个,所以每个Looper也只有一个MessageQueue。

面试时,handler会问什么?

1、一个线程或者一个activity可以有多少个handler?

无数个,从handler的构造方法可以得知,无论创建多少次,Looper和 MessageQueue都只有一份。

2、一个线程可以有多少个Looper?

一个,Looper是由ThreadLocal创建的,并且在prepare的方法中,如果Looper已经存在,会直接报错,至于为什么能保持一个,因为ThreadLocal用一个HashMap来存储,而key是这个线程的本身,达到了唯一性。

3、handler造成内存泄漏,怎么优化?

文章最开头的demo代码就是优化后的了,为什么会造成内存泄漏,可以看sendMessage的逻辑,也就是message加入MessageQueue链表的过程,每个message的target都会持有handler的引用,而handler又持有activity的引用,如果activity已经被用户离开了,但是handler里还有无数的message处理,那就会导致activity的引用一直无法被释放,造成了内存泄漏。优化方案就是使用嵌套类(java叫静态内部类),使得嵌套类不默认持有外部类的引用,并且在activity的onDestroy中移除handler的所有message。

4、handler如何做到的线程安全?

在加入链表和从链表中取出,都有同步加锁的代码逻辑,从而达到线程安全。

5、Looper中的loop方法,是一个死循环,为什么不会卡界面?

首先概念需要弄清楚,卡界面其实说的就是ANR,而ANR其实是事件没有得到响应,例如点击事件等,5秒内没有响应,就会ANR。service是10秒。
而Looper中的loop,里面是一个死循环,当没有消息需要处理的时候,是在休眠,并没有所谓的没有响应事件,所以肯定是不会产生ANR的,所以也不存在卡界面呢。

6、为什么主线程不需要调用Looper的prepare方法

因为在APP启动的时候,ActivityThread的main方法已经帮我们做了。

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

相关文章

网友评论

      本文标题:Handler

      本文链接:https://www.haomeiwen.com/subject/rzadgktx.html