美文网首页
tensorflow入门应用方法(五)——Imagenet VG

tensorflow入门应用方法(五)——Imagenet VG

作者: RobertY | 来源:发表于2017-10-29 18:59 被阅读1513次

    前一篇文章tensorflow入门应用方法(四)——训练模型的保存和读取中提到保存训练模型和读取的方法。这篇文章主要阐述加载已经训练好的Imagenet VGG-19网络对图像猫进行识别,并且可视化VGG网络卷积层的特征图像。

    下载Imagenet VGG-19

    http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

    加载Imagenet VGG-19

    完整代码如下:

    import scipy.io
    import numpy as np
    import os
    import scipy.misc
    import matplotlib.pyplot as plt
    import tensorflow as tf
    
    
    def _conv_layer(input, weights, bias):
        conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1,1,1,1), padding='SAME')
        return tf.nn.bias_add(conv, bias)
    
    
    def _pool_layer(input):
        return tf.nn.max_pool(input, ksize=(1,2,2,1), strides=(1,2,2,1), padding='SAME')
    
    
    def preprocess(image, mean_pixel):
        return image - mean_pixel
    
    
    def unprocess(image, mean_piexl):
        return image + mean_piexl
    
    
    def imread(path):
        return scipy.misc.imread(path).astype(np.float)
    
    
    def imsave(path, img):
        img = np.clip(img, 0, 255).astype(np.int8)
        scipy.misc.imsave(path, img)
    
    print('functions for vgg ready')
    
    
    def net(data_path, input_image):
        layers = (
            'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
            'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
            'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
            'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
            'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2',
            'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
            'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
            'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4'
        )
        data = scipy.io.loadmat(data_path)
        mean = data['normalization'][0][0][0]
        mean_pixel = np.mean(mean, axis=(0,1))
        weights = data['layers'][0]
        net = {}
        current = input_image
        for i, name in enumerate(layers):
            kind = name[:4]
            if kind == 'conv':
                kernels, bias = weights[i][0][0][0][0]
                kernels = np.transpose(kernels, (1, 0, 2, 3))
                bias = bias.reshape(-1)
                current = _conv_layer(current, kernels, bias)
            elif kind == 'relu':
                current = tf.nn.relu(current)
            elif kind == 'pool':
                current = _pool_layer(current)
            net[name] = current
        assert len(net) == len(layers)
        return net, mean_pixel, layers
    
    print('network for vgg ready')
    
    
    cwd = os.getcwd()
    vgg_path = cwd + '/data/imagenet-vgg-verydeep-19.mat'
    img_path = cwd + '/data/cat.jpeg'
    input_image = imread(img_path)
    shape = (1, input_image.shape[0], input_image.shape[1], input_image.shape[2])
    
    with tf.Session() as sess:
        image = tf.placeholder('float', shape=shape)
        nets, mean_pixel, all_layers = net(vgg_path, image)
        input_image_pre = np.array([preprocess(input_image, mean_pixel)])
        layers = all_layers
    
        for i, layer in enumerate(layers):
            print('[%d/%d] %s' % (i+1, len(layers), layer))
            features = nets[layer].eval(feed_dict={image: input_image_pre})
    
            print('Type of ‘features’ is ', type(features))
            print('Shape of ‘features’ is ', (features.shape,))
    
            if 1:
                plt.figure(i+1, figsize=(10, 5))
                plt.matshow(features[0, :, :, 0], cmap=plt.cm.gray, fignum=i+1)
                plt.title(''+layer)
                plt.colorbar()
                plt.show()
    

    卷积层特征图像显示

    vgg-19网络的输入图片如下


    埃及猫

    各卷积层的特征图像

    conv1~2 conv3_1~3_4 conv4_1~4_4 conv5_1~5_4
    conv1_1 conv3_1 conv4_1 conv5_1
    conv1_2 conv3_2 conv4_2 conv5_2
    conv2_1 conv3_3 conv4_3 conv5_3
    conv2_2 conv3_4 conv4_4 conv5_4

    相关文章

      网友评论

          本文标题:tensorflow入门应用方法(五)——Imagenet VG

          本文链接:https://www.haomeiwen.com/subject/sboypxtx.html