实验报告
专业:软件工程________
姓名:陈锰____________
学号:3170105197______
日期:2018/12/16_______
课程名称:____图像信息处理___ 指导老师:____宋明黎____成绩:__________________
实验名称:___Bilateral Filter____
一、实验目的和要求
学习和认识图像的滤波和增强原理,加深对图像离散值中的一阶微分和二阶微分原理的理解,通过实践操作熟悉均值滤波、中值滤波、高斯滤波和拉普拉斯变换方法,进一步掌握空间滤波原理和技术。
二、实验内容和原理
三、实验结果
1.结果分析
Hermione_formerHermione_later
2.源代码
#include<stdio.h>
#include<stdlib.h>
#include<atlimage.h>
#define SIZE 5 //Define the size for the mask
#define OFFSET (SIZE / 2) //Define the offset of the mask
#define SIGMA_S 20 //Define sigma_s for space domain
#define SIGMA_R 10 //Define sigma_r for range domain
double Wbf(double ** mask_s, double ** mask_r); //Caculate the normalization coefficient
double ** Mask_S(double **mask, double sigma_s); //Generate mask_s for space domain
double ** Mask_R(double **mask, double sigma_r, int x, int y); //Generate mask_r for range domain
void BilateralFilter(CImage image, double ** mask_s, double ** mask_r); //Implementation of Bilateral Filter
int main()
{
CImage image;
image.Load("testBMP.bmp");
double ** mask_s = NULL, **mask_r = NULL;
//Initialize mask_s, mask_r
mask_s = (double**)malloc(SIZE * sizeof(double*));
mask_r = (double**)malloc(SIZE * sizeof(double*));
for (int i = 0; i < SIZE; i++)
{
mask_s[i] = (double*)malloc(SIZE * sizeof(double));
mask_r[i] = (double*)malloc(SIZE * sizeof(double));
}
BilateralFilter(image, mask_s, mask_r);
getchar();
return 0;
}
double Gaussian(double sigma, double x)
{
//Gaussian function without the constant coefficient
return exp(-0.5 * x * x / (sigma * sigma));
}
double ** Mask_S(double **mask, double sigma_s)
{
//Mask_S is obtained based on the position of pixels around the key pixel
//Horizontal and vertical distance are considered alike
for (int i = -OFFSET; i <= OFFSET; i++)
for (int j = -OFFSET; j <= OFFSET; j++)
mask[i + OFFSET][j + OFFSET] = Gaussian(sigma_s, i) * Gaussian(sigma_s, j);
return mask;
}
double ** Mask_R(double **mask, double sigma_r, int x, int y)
{
CImage Bmp;
COLORREF color1, color2;
int r, g, b;
Bmp.Load("testBMP.bmp");
//Get RGB value of the key piexl
color1 = Bmp.GetPixel(x, y);
r = GetRValue(color1);
g = GetGValue(color1);
b = GetBValue(color1);
for (int i = -OFFSET; i <= OFFSET; i++)
for (int j = -OFFSET; j <= OFFSET; j++)
{
//R,G,B channels are considered based on the difference value btween key pixel and others
color2 = Bmp.GetPixel(x + i, y + j);
//Caculate the difference value btween key pixel and others respectively
int dR = r - GetRValue(color2);
int dG = g - GetGValue(color2);
int dB = b - GetBValue(color2);
//Combine the effect of the three channels and mask_r is acquired
mask[i + OFFSET][j + OFFSET] = Gaussian(sigma_r, dR) * Gaussian(sigma_r, dG) * Gaussian(sigma_r, dB);
}
return mask;
}
double Wbf(double ** mask_s, double ** mask_r)
{
double wbf = 0;
//Multiple each pair of elements in this two masks, the sum them up
for (int i = 0; i < SIZE; i++)
for (int j = 0; j < SIZE; j++)
wbf += mask_s[i][j] * mask_r[i][j];
return wbf;
}
//Implementation of weighted bilateral filter
void BilateralFilter(CImage image, double ** mask_s, double ** mask_r)
{
printf("Waite a minute...");
CImage bmp = image;
//Get mask_s invoking Mask_S
mask_s = Mask_S(mask_s, SIGMA_S);
for (int i = OFFSET; i < bmp.GetWidth() - OFFSET; i++)
{
for (int j = OFFSET; j < bmp.GetHeight() - OFFSET; j++)
{
COLORREF color;
double r = 0, g = 0, b = 0;
//Get real time mask_r invoking Mask_R
mask_r = Mask_R(mask_r, SIGMA_R, i, j);
double w = Wbf(mask_s, mask_r);
//Caculate the value of goal pixel with mask_s and mask_r
for (int pi = -OFFSET; pi <= OFFSET; pi++)
for (int pj = -OFFSET; pj <= OFFSET; pj++)
{
color = image.GetPixel(i + pi, j + pj);
double k = mask_s[OFFSET + pi][OFFSET + pj] * mask_r[OFFSET + pi][OFFSET + pj];
r += k * GetRValue(color);
g += k * GetGValue(color);
b += k * GetBValue(color);
}
//Rearrange the value of RGB avoid overflow
r = (int)(r / w + 0.5);
g = (int)(g / w + 0.5);
b = (int)(b / w + 0.5);
r = r > 255 ? 255 : r;
r = r < 0 ? 0 : r;
g = g > 255 ? 255 : g;
g = g < 0 ? 0 : g;
b = b > 255 ? 255 : b;
b = b < 0 ? 0 : b;
//Set pixel
bmp.SetPixelRGB(i, j, (BYTE)r, (BYTE)g, (BYTE)b);
}
}
//Save the new image and a success prompt will be given on the console
bmp.Save("BilateralFilter.bmp");
printf("\nBilateral Filter Successful!\n");
}
List * GenerateGraph(int *hashTable, List *graph, int N)
{
int i, j;
List * p;
graph = (List )calloc(N, sizeof(struct list));
for(i = 0; i < N; i++)
if(hashTable[i] >= 0)
{
graph[i] = (List)malloc(sizeof(struct list));
graph[i]->Name = i;
graph[i]->Next = NULL;
}
for(i = 0; i < N; i++)
if(hashTable[i] >= 0 && hashTable[i] % N != i)
for(j = hashTable[i] % N; j != i; j = (j == N - 1 ? 0 : j + 1))
graph[j] = Insert(i, graph[j]);
return graph;
}
List Insert(int name, List L)
{
int i;
List p;
p = (List)malloc(sizeof(struct list));
p->Name = name;
p->Next = NULL;
if(L->Next == NULL)
L->Next = p;
else
{
p->Next = L->Next;
L->Next = p;
}
return L;
}
网友评论