美文网首页
Elasticsearch: 权威指南

Elasticsearch: 权威指南

作者: 北海北_6dc3 | 来源:发表于2020-05-12 18:00 被阅读0次
  • 按需水平、垂直扩容

Elasticsearch定义

  • 一个分布式的实时文档存储,每个字段 可以被索引与搜索
  • 一个分布式实时分析搜索引擎
  • 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据

开源协议:

Apache 2 license

JAVA API---端口使用9300

如果你正在使用 Java,在代码中你可以使用 Elasticsearch 内置的两个客户端:

  • 节点客户端(Node client)
    节点客户端作为一个非数据节点加入到本地集群中。换句话说,它本身不保存任何数据,但是它知道数据在集群中的哪个节点中,并且可以把请求转发到正确的节点。
  • 传输客户端(Transport client)
    轻量级的传输客户端可以将请求发送到远程集群。它本身不加入集群,但是它可以将请求转发到集群中的一个节点上。

两个 Java 客户端都是通过 9300 端口并使用 Elasticsearch 的原生 传输 协议和集群交互。集群中的节点通过端口 9300 彼此通信。如果这个端口没有打开,节点将无法形成一个集群。

Java 客户端作为节点必须和 Elasticsearch 有相同的 主要 版本;否则,它们之间将无法互相理解。

RESTful API with JSON over HTTP---端口使用9200

所有其他语言可以使用 RESTful API 通过端口 9200 和 Elasticsearch 进行通信,你可以用你最喜爱的 web 客户端访问 Elasticsearch 。事实上,正如你所看到的,你甚至可以使用 curl 命令来和 Elasticsearch 交互。

Elasticsearch 为以下语言提供了官方客户端--Groovy、JavaScript、.NET、 PHP、 Perl、 Python 和 Ruby—​还有很多社区提供的客户端和插件,所有这些都可以在 Elasticsearch Clients 中找到。

一个 Elasticsearch 请求和任何 HTTP 请求一样由若干相同的部件组成:

curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY_STRING>' -d '<BODY>'

被 < > 标记的部件:

标签 含义
VERB 适当的 HTTP 方法 或 谓词 : GET、 POST、 PUT、 HEAD 或者 DELETE。
PROTOCOL http 或者 https(如果你在 Elasticsearch 前面有一个 https 代理)
HOST Elasticsearch 集群中任意节点的主机名,或者用 localhost 代表本地机器上的节点。
PORT 运行 Elasticsearch HTTP 服务的端口号,默认是 9200 。
PATH API 的终端路径(例如 _count 将返回集群中文档数量)。Path 可能包含多个组件,例如:_cluster/stats 和 _nodes/stats/jvm 。
QUERY_STRING 任意可选的查询字符串参数 (例如 ?pretty 将格式化地输出 JSON 返回值,使其更容易阅读)
BODY 一个 JSON 格式的请求体 (如果请求需要的话)

例如,计算集群中文档的数量,我们可以用这个:

curl -XGET 'http://localhost:9200/_count?pretty' -d '
{
    "query": {
        "match_all": {}
    }
}
'

Elasticsearch 返回一个 HTTP 状态码(例如:200 OK)和(除HEAD请求)一个 JSON 格式的返回值。前面的 curl 请求将返回一个像下面一样的 JSON 体:

{
    "count" : 0,
    "_shards" : {
        "total" : 5,
        "successful" : 5,
        "failed" : 0
    }
}

在返回结果中没有看到 HTTP 头信息是因为我们没有要求curl显示它们。想要看到头信息,需要结合 -i 参数来使用 curl 命令:

curl -i -XGET 'localhost:9200/'

在书中剩余的部分,我们将用缩写格式来展示这些 curl 示例,所谓的缩写格式就是省略请求中所有相同的部分,例如主机名、端口号以及 curl 命令本身。而不是像下面显示的那样用一个完整的请求:

curl -XGET 'localhost:9200/_count?pretty' -d '
{
    "query": {
        "match_all": {}
    }
}'

我们将用缩写格式显示:

GET /_count
{
    "query": {
        "match_all": {}
    }
}

简单教程

需求

我们受雇于 Megacorp 公司,作为 HR 部门新的 “热爱无人机” ("We love our drones!")激励项目的一部分,我们的任务是为此创建一个员工目录。该目录应当能培养员工认同感及支持实时、高效、动态协作,因此有一些业务需求:

  • 支持包含多值标签、数值、以及全文本的数据
  • 检索任一员工的完整信息
  • 允许结构化搜索,比如查询 30 岁以上的员工
  • 允许简单的全文搜索以及较复杂的短语搜索
  • 支持在匹配文档内容中高亮显示搜索片段
  • 支持基于数据创建和管理分析仪表盘

第一步,存储员工数据

概念
  • 索引(名词):如前所述,一个 索引 类似于传统关系数据库中的一个 数据库 ,是一个存储关系型文档的地方。 索引 (index) 的复数词为 indices 或 indexes 。
  • 索引(动词):索引一个文档 就是存储一个文档到一个 索引 (名词)中以便被检索和查询。这非常类似于 SQL 语句中的 INSERT 关键词,除了文档已存在时,新文档会替换旧文档情况之外。
  • 倒排索引:关系型数据库通过增加一个 索引 比如一个 B树(B-tree)索引 到指定的列上,以便提升数据检索速度。Elasticsearch 和 Lucene 使用了一个叫做 倒排索引 的结构来达到相同的目的。
    默认的,一个文档中的每一个属性都是 被索引 的(有一个倒排索引)和可搜索的。一个没有倒排索引的属性是不能被搜索到的。我们将在 倒排索引 讨论倒排索引的更多细节。
安装sense

注意:新版本无需安装sense,直接打开dev-tools
Kibana 7.6.2 management

开始

对于员工目录,我们将做如下操作:

  • 每个员工索引一个文档,文档包含该员工的所有信息。
  • 每个文档都将是 employee 类型 。
  • 该类型位于 索引 megacorp 内。
  • 该索引保存在我们的 Elasticsearch 集群中。
写入员工数据
PUT /megacorp/employee/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}

注意,路径 /megacorp/employee/1 包含了三部分的信息:

  • megacorp
    索引名称
  • employee
    类型名称
  • 1
    特定雇员的ID

继续插入

PUT /megacorp/employee/2
{
    "first_name" :  "Jane",
    "last_name" :   "Smith",
    "age" :         32,
    "about" :       "I like to collect rock albums",
    "interests":  [ "music" ]
}

PUT /megacorp/employee/3
{
    "first_name" :  "Douglas",
    "last_name" :   "Fir",
    "age" :         35,
    "about":        "I like to build cabinets",
    "interests":  [ "forestry" ]
}

我们可以看到插入需要转化的数据

#! Deprecation: [types removal] Specifying types in document index requests is deprecated, use the typeless endpoints instead (/{index}/_doc/{id}, /{index}/_doc, or /{index}/_create/{id}).
{
  "_index" : "megacorp",
  "_type" : "employee",
  "_id" : "3",
  "_version" : 1,
  "result" : "created",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 2,
  "_primary_term" : 1
}

简单获取员工数据
GET /megacorp/employee/1

包含的元数据

{
  "_index" : "megacorp",
  "_type" : "employee",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "first_name" : "John",
    "last_name" : "Smith",
    "age" : 25,
    "about" : "I love to go rock climbing",
    "interests" : [
      "sports",
      "music"
    ]
  }
}

将 HTTP 命令由 PUT 改为 GET 可以用来检索文档,同样的,可以使用 DELETE 命令来删除文档,以及使用 HEAD 指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT 。

轻量级搜索
  • 搜索所有雇员
GET /megacorp/employee/_search

{
  "took" : 15,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "first_name" : "John",
          "last_name" : "Smith",
          "age" : 25,
          "about" : "I love to go rock climbing",
          "interests" : [
            "sports",
            "music"
          ]
        }
      },
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "first_name" : "Jane",
          "last_name" : "Smith",
          "age" : 32,
          "about" : "I like to collect rock albums",
          "interests" : [
            "music"
          ]
        }
      },
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "3",
        "_score" : 1.0,
        "_source" : {
          "first_name" : "Douglas",
          "last_name" : "Fir",
          "age" : 35,
          "about" : "I like to build cabinets",
          "interests" : [
            "forestry"
          ]
        }
      }
    ]
  }
}

可以看到,我们仍然使用索引库 megacorp 以及类型 employee,但与指定一个文档 ID 不同,这次使用 _search 。返回结果包括了所有三个文档,放在数组 hits 中。一个搜索默认返回十条结果
注意:返回结果不仅告知匹配了哪些文档,还包含了整个文档本身:显示搜索结果给最终用户所需的全部信息。

  • 搜索姓氏为 Smith 的雇员。为此,我们将使用一个 高亮 搜索,很容易通过命令行完成
GET /megacorp/employee/_search?q=last_name:Smith

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.4700036,
    "hits" : [
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "1",
        "_score" : 0.4700036,
        "_source" : {
          "first_name" : "John",
          "last_name" : "Smith",
          "age" : 25,
          "about" : "I love to go rock climbing",
          "interests" : [
            "sports",
            "music"
          ]
        }
      },
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "2",
        "_score" : 0.4700036,
        "_source" : {
          "first_name" : "Jane",
          "last_name" : "Smith",
          "age" : 32,
          "about" : "I like to collect rock albums",
          "interests" : [
            "music"
          ]
        }
      }
    ]
  }
}

我们仍然在请求路径中使用 _search 端点,并将查询本身赋值给参数 q= 。返回结果给出了所有的 Smith:
参考资料:https://www.elastic.co/guide/cn/elasticsearch/guide/current/search-lite.html

使用查询表达式
GET /megacorp/employee/_search
{
    "query" : {
        "match" : {
            "last_name" : "Smith"
        }
    }
}

返回

{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.4700036,
    "hits" : [
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "1",
        "_score" : 0.4700036,
        "_source" : {
          "first_name" : "John",
          "last_name" : "Smith",
          "age" : 25,
          "about" : "I love to go rock climbing",
          "interests" : [
            "sports",
            "music"
          ]
        }
      },
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "2",
        "_score" : 0.4700036,
        "_source" : {
          "first_name" : "Jane",
          "last_name" : "Smith",
          "age" : 32,
          "about" : "I like to collect rock albums",
          "interests" : [
            "music"
          ]
        }
      }
    ]
  }
}

返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match 查询(属于查询类型之一,后面将继续介绍)。

更复杂的查询

现在尝试下更复杂的搜索。 同样搜索姓氏为 Smith 的员工,但这次我们只需要年龄大于 30 的。查询需要稍作调整,使用过滤器 filter ,它支持高效地执行一个结构化查询。

GET /megacorp/employee/_search
{
    "query" : {
        "bool": {
            "must": {
                "match" : {
                    "last_name" : "smith" 
                }
            },
            "filter": {
                "range" : {
                    "age" : { "gt" : 30 } 
                }
            }
        }
    }
}

返回

{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.4700036,
    "hits" : [
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "2",
        "_score" : 0.4700036,
        "_source" : {
          "first_name" : "Jane",
          "last_name" : "Smith",
          "age" : 32,
          "about" : "I like to collect rock albums",
          "interests" : [
            "music"
          ]
        }
      }
    ]
  }
}

全文搜索

查询

GET /megacorp/employee/_search
{
    "query" : {
        "match" : {
            "about" : "rock climbing"
        }
    }
}

Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:John Smith 的 about 属性清楚地写着 “rock climbing” 。

但为什么 Jane Smith 也作为结果返回了呢?原因是她的 about 属性里提到了 “rock” 。因为只有 “rock” 而没有 “climbing” ,所以她的相关性得分低于 John 的。

这是一个很好的案例,阐明了 Elasticsearch 如何 在 全文属性上搜索并返回相关性最强的结果。Elasticsearch中的 相关性 概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。

短语搜索

找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者短语 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。

为此对 match 查询稍作调整,使用一个叫做 match_phrase 的查询:

GET /megacorp/employee/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    }
}

毫无悬念,返回结果仅有 John Smith 的文档。

{
  "took" : 6,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.4167401,
    "hits" : [
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "1",
        "_score" : 1.4167401,
        "_source" : {
          "first_name" : "John",
          "last_name" : "Smith",
          "age" : 25,
          "about" : "I love to go rock climbing",
          "interests" : [
            "sports",
            "music"
          ]
        }
      }
    ]
  }
}

高亮搜索

许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。

再次执行前面的查询,并增加一个新的 highlight 参数:

GET /megacorp/employee/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    },
    "highlight": {
        "fields" : {
            "about" : {}
        }
    }
}

返回

{
  "took" : 151,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.4167401,
    "hits" : [
      {
        "_index" : "megacorp",
        "_type" : "employee",
        "_id" : "1",
        "_score" : 1.4167401,
        "_source" : {
          "first_name" : "John",
          "last_name" : "Smith",
          "age" : 25,
          "about" : "I love to go rock climbing",
          "interests" : [
            "sports",
            "music"
          ]
        },
        "highlight" : {
          "about" : [
            "I love to go <em>rock</em> <em>climbing</em>"
          ]
        }
      }
    ]
  }
}

当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做 highlight 的部分。这个部分包含了 about 属性匹配的文本片段,并以 HTML 标签 <em></em> 封装:

分析

终于到了最后一个业务需求:支持管理者对员工目录做分析。 Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。

举个例子,挖掘出员工中最受欢迎的兴趣爱好:

http://129.211.190.76:5601/app/kibana#/dev_tools/console
https://www.elastic.co/guide/cn/elasticsearch/guide/current/_search_with_query_dsl.html

参考资料:
Elasticsearch: 权威指南 » 基础入门 » 集群内的原理

相关文章

网友评论

      本文标题:Elasticsearch: 权威指南

      本文链接:https://www.haomeiwen.com/subject/sdpgihtx.html