美文网首页
ThreadPoolExecutor扩展策略

ThreadPoolExecutor扩展策略

作者: timothyue1 | 来源:发表于2019-04-02 20:07 被阅读0次

java.util.concurrent
threadPoolExecutor execute执行策略:优先offer到queue,queue满后再扩充线程到maxThread,如果已经到了maxThread就reject 比较适合于CPU密集型应用(比如runnable内部执行的操作都在JVM内部,memory copy, or compute等等)

StandardThreadExecutor execute执行策略:优先扩充线程到maxThread,再offer到queue,如果满了就reject比较适合于业务处理需要远程资源的场景

public class StandardThreadExecutor extends ThreadPoolExecutor {
    public static final int DEFAULT_MIN_THREADS = 20;
    public static final int DEFAULT_MAX_THREADS = 200;
    public static final int DEFAULT_MAX_IDLE_TIME = 60 * 1000; // 1 minutes

    protected AtomicInteger submittedTasksCount;    // 正在处理的任务数
    private int maxSubmittedTaskCount;                // 最大允许同时处理的任务数

    public StandardThreadExecutor() {
        this(DEFAULT_MIN_THREADS, DEFAULT_MAX_THREADS);
    }

    public StandardThreadExecutor(int coreThread, int maxThreads) {
        this(coreThread, maxThreads, maxThreads);
    }

    public StandardThreadExecutor(int coreThread, int maxThreads, long keepAliveTime, TimeUnit unit) {
        this(coreThread, maxThreads, keepAliveTime, unit, maxThreads);
    }

    public StandardThreadExecutor(int coreThreads, int maxThreads, int queueCapacity) {
        this(coreThreads, maxThreads, queueCapacity, Executors.defaultThreadFactory());
    }

    public StandardThreadExecutor(int coreThreads, int maxThreads, int queueCapacity, ThreadFactory threadFactory) {
        this(coreThreads, maxThreads, DEFAULT_MAX_IDLE_TIME, TimeUnit.MILLISECONDS, queueCapacity, threadFactory);
    }

    public StandardThreadExecutor(int coreThreads, int maxThreads, long keepAliveTime, TimeUnit unit, int queueCapacity) {
        this(coreThreads, maxThreads, keepAliveTime, unit, queueCapacity, Executors.defaultThreadFactory());
    }

    public StandardThreadExecutor(int coreThreads, int maxThreads, long keepAliveTime, TimeUnit unit,
                                  int queueCapacity, ThreadFactory threadFactory) {
        this(coreThreads, maxThreads, keepAliveTime, unit, queueCapacity, threadFactory, new AbortPolicy());
    }

    public StandardThreadExecutor(int coreThreads, int maxThreads, long keepAliveTime, TimeUnit unit,
                                  int queueCapacity, ThreadFactory threadFactory, RejectedExecutionHandler handler) {
        super(coreThreads, maxThreads, keepAliveTime, unit, new ExecutorQueue(), threadFactory, handler);
        ((ExecutorQueue) getQueue()).setStandardThreadExecutor(this);

        submittedTasksCount = new AtomicInteger(0);

        // 最大并发任务限制: 队列buffer数 + 最大线程数
        maxSubmittedTaskCount = queueCapacity + maxThreads;
    }

    public void execute(Runnable command) {
        int count = submittedTasksCount.incrementAndGet();

        // 超过最大的并发任务限制,进行 reject
        // 依赖的LinkedTransferQueue没有长度限制,因此这里进行控制
        if (count > maxSubmittedTaskCount) {
            submittedTasksCount.decrementAndGet();
            getRejectedExecutionHandler().rejectedExecution(command, this);
        }

        try {
            super.execute(command);
        } catch (RejectedExecutionException rx) {
            // there could have been contention around the queue
            if (!((ExecutorQueue) getQueue()).force(command)) {
                submittedTasksCount.decrementAndGet();

                getRejectedExecutionHandler().rejectedExecution(command, this);
            }
        }
    }

    public int getSubmittedTasksCount() {
        return this.submittedTasksCount.get();
    }

    public int getMaxSubmittedTaskCount() {
        return maxSubmittedTaskCount;
    }

    protected void afterExecute(Runnable r, Throwable t) {
        submittedTasksCount.decrementAndGet();
    }
}

LinkedTransferQueue 能保证更高性能,相比与LinkedBlockingQueue有明显提升, 不过LinkedTransferQueue的缺点是没有队列长度控制,需要在外层协助控制

class ExecutorQueue extends LinkedTransferQueue<Runnable> {
    private static final long serialVersionUID = -265236426751004839L;
    StandardThreadExecutor threadPoolExecutor;

    public ExecutorQueue() {
        super();
    }

    public void setStandardThreadExecutor(StandardThreadExecutor threadPoolExecutor) {
        this.threadPoolExecutor = threadPoolExecutor;
    }

    // 注:代码来源于 tomcat
    public boolean force(Runnable o) {
        if (threadPoolExecutor.isShutdown()) {
            throw new RejectedExecutionException("Executor not running, can't force a command into the queue");
        }
        // forces the item onto the queue, to be used if the task is rejected
        return super.offer(o);
    }

    // 注:tomcat的代码进行一些小变更
    public boolean offer(Runnable o) {
        int poolSize = threadPoolExecutor.getPoolSize();

        // we are maxed out on threads, simply queue the object
        if (poolSize == threadPoolExecutor.getMaximumPoolSize()) {
            return super.offer(o);
        }
        // we have idle threads, just add it to the queue
        // note that we don't use getActiveCount(), see BZ 49730
        if (threadPoolExecutor.getSubmittedTasksCount() <= poolSize) {
            return super.offer(o);
        }
        // if we have less threads than maximum force creation of a new
        // thread
        if (poolSize < threadPoolExecutor.getMaximumPoolSize()) {
            return false;
        }
        // if we reached here, we need to add it to the queue
        return super.offer(o);
    }
}

相关文章

网友评论

      本文标题:ThreadPoolExecutor扩展策略

      本文链接:https://www.haomeiwen.com/subject/seenbqtx.html