美文网首页
TCP 三次握手&四次握手

TCP 三次握手&四次握手

作者: 我爱张智容 | 来源:发表于2021-04-30 20:59 被阅读0次

十五. TCP 三次握手

客户端与服务端建立一个 TCP 连接共计需要发送 3 个包才能完成,这个过程称为三次握手(Three-way Handshake)。如上面所述,数据段的序号、确认序号以及滑动窗口大小都在这个过程中完成。socket 编程中,客户端执行 connect() 时,将触发三次握手。

所谓三次握手(Three-way Handshake),是指建立一个 TCP 连接时,需要客户端和服务器总共发送3个包。

三次握手的目的是连接服务器指定端口,建立 TCP 连接,并同步连接双方的序列号和确认号,交换 TCP 窗口大小信息。在 socket 编程中,客户端执行 connect() 时。将触发三次握手。

  • 第一次握手(SYN=1, seq=x):

客户端发送一个 TCP 的 SYN 标志位置1的包,指明客户端打算连接的服务器的端口,以及初始序号 X,保存在包头的序列号(Sequence Number)字段里。序列号的实现目前会随着时间的变化而变化,所以每次建立连接时的序列号都不同

发送完毕后,客户端进入 SYN_SEND 状态。

  • 第二次握手(SYN=1, ACK=1, seq=y, ACKnum=x+1):

服务器发回确认包(ACK)应答。即 SYN 标志位和 ACK 标志位均为1。服务器端选择自己 ISN 序列号,放到 Seq 域里,同时将确认序号(Acknowledgement Number)设置为客户的 ISN 加1,即X+1。 发送完毕后,服务器端进入 SYN_RCVD 状态。

  • 第三次握手(ACK=1,ACKnum=y+1)

客户端再次发送确认包(ACK),SYN 标志位为0,ACK 标志位为1,并且把服务器发来 ACK 的序号字段+1,放在确定字段中发送给对方,并且在数据段放写ISN的+1

发送完毕后,客户端进入 ESTABLISHED 状态,当服务器端接收到这个包时,也进入 ESTABLISHED 状态,TCP 握手结束。

三次握手的过程的示意图如下:

image image

为什么是三次握手

根据一般的思路,我们可能会觉得只要两次握手就可以了,第三步确认看似是多余的。那么 TCP 协议为什么还要费力不讨好的加上这一次握手呢?

这是因为在网络请求中,我们应该时刻记住:“网络是不可靠的,数据包是可能丢失的”。假设没有第三次确认,客户端向服务端发送了 SYN,请求建立连接。由于延迟,服务端没有及时收到这个包。于是客户端重新发送一个 SYN 包。回忆一下介绍 TCP 首部时提到的序列号,这两个包的序列号显然是相同的。

假设服务端接收到了第二个 SYN 包,建立了通信,一段时间后通信结束,连接被关闭。这时候最初被发送的 SYN 包刚刚抵达服务端,服务端又会发送一次 ACK 确认。由于两次握手就建立了连接,此时的服务端就会建立一个新的连接,然而客户端觉得自己并没有请求建立连接,所以就不会向服务端发送数据。从而导致服务端建立了一个空的连接,白白浪费资源。

在三次握手的情况下,服务端直到收到客户端的应答后才会建立连接。因此在上述情况下,客户端会接受到一个相同的 ACK 包,这时候它会抛弃这个数据包,不会和服务端进行第三次握手,因此避免了服务端建立空的连接。

SYN攻击:

1. 什么是 SYN 攻击(SYN Flood)?

在三次握手过程中,服务器发送 SYN-ACK 之后,收到客户端的 ACK 之前的 TCP 连接称为半连接(half-open connect)。此时服务器处于 SYN_RCVD 状态。当收到 ACK 后,服务器才能转入 ESTABLISHED 状态.

SYN 攻击指的是,攻击客户端在短时间内伪造大量不存在的IP地址,向服务器不断地发送SYN包,服务器回复确认包,并等待客户的确认。由于源地址是不存在的,服务器需要不断的重发直至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,导致目标系统运行缓慢,严重者会引起网络堵塞甚至系统瘫痪。

SYN 攻击是一种典型的 DoS/DDoS 攻击。

2. 如何检测 SYN 攻击?

检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的 netstats 命令来检测 SYN 攻击。

HTTP

# netstat -na TCP | grep SYN_RECV | more,

3. 如何防御 SYN 攻击?

SYN攻击不能完全被阻止,除非将TCP协议重新设计。我们所做的是尽可能的减轻SYN攻击的危害,常见的防御 SYN 攻击的方法有如下几种:

  • 缩短超时(SYN Timeout)时间
  • 增加最大半连接数
  • 过滤网关防护
  • SYN cookies技术

十六. TCP 四次挥手

TCP 的连接的拆除需要发送四个包,因此称为四次挥手(Four-way handshake),也叫做改进的三次握手。客户端或服务器均可主动发起挥手动作,在 socket 编程中,任何一方执行 close() 操作即可产生挥手操作。

  • 第一次挥手(FIN=1,seq=x)

假设客户端想要关闭连接,客户端发送一个 FIN 标志位置为1的包,表示自己已经没有数据可以发送了,但是仍然可以接受数据。

发送完毕后,客户端进入 FIN_WAIT_1 状态。

  • 第二次挥手(ACK=1,ACKnum=x+1)

服务器端确认客户端的 FIN 包,发送一个确认包,表明自己接受到了客户端关闭连接的请求,但还没有准备好关闭连接。

发送完毕后,服务器端进入 CLOSE_WAIT 状态,客户端接收到这个确认包之后,进入 FIN_WAIT_2 状态,等待服务器端关闭连接。

  • 第三次挥手(FIN=1,seq=y)

服务器端准备好关闭连接时,向客户端发送结束连接请求,FIN 置为1。

发送完毕后,服务器端进入 LAST_ACK 状态,等待来自客户端的最后一个 ACK。

  • 第四次挥手(ACK=1,ACKnum=y+1)

客户端接收到来自服务器端的关闭请求,发送一个确认包,并进入 TIME_WAIT 状态,等待可能出现的要求重传的 ACK 包。

服务器端接收到这个确认包之后,关闭连接,进入 CLOSED 状态。

客户端等待了某个固定时间(两个最大段生命周期,2MSL,2 Maximum Segment Lifetime)之后,没有收到服务器端的 ACK ,认为服务器端已经正常关闭连接,于是自己也关闭连接,进入 CLOSED 状态。

四次挥手的示意图如下:

image image

TCP 为什么要进行四次挥手? / 为什么 TCP 建立连接需要三次,而释放连接则需要四次?

因为 TCP 是全双工模式,客户端请求关闭连接后,客户端向服务端的连接关闭(一二次挥手),服务端继续传输之前没传完的数据给客户端(数据传输),服务端向客户端的连接关闭(三四次挥手)。所以 TCP 释放连接时服务器的 ACK 和 FIN 是分开发送的(中间隔着数据传输),而 TCP 建立连接时服务器的 ACK 和 SYN 是一起发送的(第二次握手),所以 TCP 建立连接需要三次,而释放连接则需要四次。

为什么 TCP 连接时可以 ACK 和 SYN 一起发送,而释放时则 ACK 和 FIN 分开发送呢?(ACK 和 FIN 分开是指第二次和第三次挥手)

因为客户端请求释放时,服务器可能还有数据需要传输给客户端,因此服务端要先响应客户端 FIN 请求(服务端发送 ACK),然后数据传输,传输完成后,服务端再提出 FIN 请求(服务端发送 FIN);而连接时则没有中间的数据传输,因此连接时可以 ACK 和 SYN 一起发送。

为什么客户端释放最后需要 TIME-WAIT 等待 2MSL 呢?

  1. 为了保证客户端发送的最后一个 ACK 报文能够到达服务端。若未成功到达,则服务端超时重传 FIN+ACK 报文段,客户端再重传 ACK,并重新计时。
  2. 防止已失效的连接请求报文段出现在本连接中。TIME-WAIT 持续 2MSL 可使本连接持续的时间内所产生的所有报文段都从网络中消失,这样可使下次连接中不会出现旧的连接报文段。

如果在处于 TIME_WAIT 状态的客户端返回 ACK 丢失,会发生什么呢?服务端由于没有接收到 ACK 号,可能会重新发送一次 FIN 。这个时候如果客户端不等待一段时间,直接关闭连接,那么通信中对应的端口号也会释放出来了,这时候如果正好有应用程序创建套接字,又恰好分配了这同一个端口号,接着服务器的 FIN 包又刚好发到。本来是要关闭之前的连接,但是由于端口号相同,这个 FIN 就开始断开这个刚刚建立的新连接。这所以需要等待一段时间,就是为了防止这种误操作。

image

常用端口

知名端口号一般由 0 - 1023 的数字分配而成。

image

TCP 代表的知名端口:

image

UDP 代表的知名端口:

image

十七. Socket Interfaces

从 Linux 内核的角度来看,一个套接字就是通信的一个端点。 从 Linux 程序的角度来看,套接字是一个有相应描述符的文件。 普通文件的打开操作返回一个文件描述字,而 socket() 用于创建一个 socket 描述符,唯一标识一个 socket。 这个 socket 描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些操作。

常用的函数有:

socket()
bind()
listen()
connect()
accept()
write()
read()
close()

Socket 的交互流程

image image

图中展示了 TCP 协议的 socket 交互流程,描述如下:

  1. 服务器根据地址类型、socket 类型、以及协议来创建 socket。
  2. 服务器为 socket 绑定 IP 地址和端口号。
  3. 服务器 socket 监听端口号请求,随时准备接收客户端发来的连接,这时候服务器的 socket 并没有全部打开。
  4. 客户端创建 socket。
  5. 客户端打开 socket,根据服务器 IP 地址和端口号试图连接服务器 socket。
  6. 服务器 socket 接收到客户端 socket 请求,被动打开,开始接收客户端请求,知道客户端返回连接信息。这时候 socket 进入阻塞状态,阻塞是由于 accept() 方法会一直等到客户端返回连接信息后才返回,然后开始连接下一个客户端的连接请求。
  7. 客户端连接成功,向服务器发送连接状态信息。
  8. 服务器 accept() 方法返回,连接成功。
  9. 服务器和客户端通过网络 I/O 函数进行数据的传输。
  10. 客户端关闭 socket。
  11. 服务器关闭 socket。

这个过程中,服务器和客户端建立连接的部分,就体现了 TCP 三次握手的原理。


Reference:
《图解 TCP/IP》
《TCP/IP 详解 卷1:协议》
《网络是怎样连接的》

相关文章

网友评论

      本文标题:TCP 三次握手&四次握手

      本文链接:https://www.haomeiwen.com/subject/sfdorltx.html