美文网首页
整数划分问题

整数划分问题

作者: Ethan_Walker | 来源:发表于2017-11-19 14:23 被阅读154次

    整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及。
    所谓整数划分,是指把一个正整数n写成如下形式:
    n=m1+m2+…+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,…,mi}为n的一个划分。
    如果{m1,m2,…,mi}中的最大值不超过m,即max(m1,m2,…,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
    例如但n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};
    注意4=1+3 和 4=3+1被认为是同一个划分。
    该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;

    根据n和m的关系,考虑以下几种情况:

    1. 当n=1时,不论m的值为多少(m>0),只有一种划分即{1};

    2. 当m=1时,不论n的值为多少,只有一种划分即n个1,{1,1,1,…,1};

    3. 当n=m时,根据划分中是否包含n,可以分为两种情况:
      (1) 划分中包含n的情况,只有一个即{n};
      (2) 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。
      因此 f(n,n) =1 + f(n,n-1);

    4. 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);

    5. 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
      (1) 划分中包含m的情况,即{m, {x1,x2,…xi}}, 其中{x1,x2,… xi} 的和为n-m,可能再次出现m,因此是(n-m)的m划分,因此这种划分
      个数为f(n-m, m);
      (2) 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);
      因此 f(n, m) = f(n-m, m)+f(n,m-1);

    综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:

    f(n, m)= 1; (n=1 or m=1)
    f(n, n); (n<m)
    1+ f(n, m-1); (n=m)
    f(n-m,m)+f(n,m-1); (n>m)

    递归代码

    import java.util.Scanner;
    
    /**
     * Created by EthanWalker on 2017/11/19.
     */
    public class IntPartition {
    
        public static int digui(int n, int m) {
            if(n==0||m==0) return 0;
            if (n == 1 || m == 1) return 1;
            if (n == m) return 1 + digui(n, n - 1);
            if (n < m) return digui(n, n);
            // n>m 时
            return digui(n - m, m) + digui(n, m - 1);
        }
    
        public static void main(String[] args) {
            Scanner scanner = new Scanner(System.in);
            while (true) {
                int i = scanner.nextInt();
                if (i == -1) {
                    break;
                }
                long begin = System.currentTimeMillis();
                int digui = digui(i, i);   //递归超时
                long end = System.currentTimeMillis();
    
                System.out.println("递归的结果: " + digui);
                System.out.println("花费的时间: "+(end-begin)+" 毫秒");
            }
        }
    
    
    }
    
    

    非递归(二维数组)

    import java.util.Scanner;
    
    /**
     * Created by EthanWalker on 2017/11/19.
     */
    public class IntPartitionArray {
    
    
        public static int array(int n) {
            int[][] a = new int[n + 1][n + 1];
    
            for (int i = 0; i <= n; i++) {
                for (int j = 0; j <= n; j++) {
                    a[i][j] = 0;
                }
            }
            for (int i = 1; i <= n; i++) {
                a[i][1] = 1;
                a[1][i] = 1;
            }
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    if (j == 1 || i == 1) a[i][j] = 1;
                    else if (i == j) {
                        a[i][j] = 1 + a[i][i - 1];
                    } else if (i < j) {
                        a[i][j] = a[i][i];
                    } else if (i > j) {
                        a[i][j] = a[i - j][j] + a[i][j - 1];
                    }
                }
            }
            return a[n][n];
        }
    
    
    
        public static void main(String[] args) {
            Scanner scanner = new Scanner(System.in);
    
            int[][] a = new int[121][121];
    
            for (int i = 0; i <= 120; i++) {
                for (int j = 0; j <= 120; j++) {
                    a[i][j] = 0;
                }
            }
            for (int i = 1; i <= 120; i++) {
                a[i][1] = 1;
                a[1][i] = 1;
            }
            for (int i = 1; i <= 120; i++) {
                for (int j = 1; j <= 120; j++) {
                    if (j == 1 || i == 1) a[i][j] = 1;
                    else if (i == j) {
                        a[i][j] = 1 + a[i][i - 1];
                    } else if (i < j) {
                        a[i][j] = a[i][i];
                    } else if (i > j) {
                        a[i][j] = a[i - j][j] + a[i][j - 1];
                    }
                }
            }
            while (scanner.hasNext()) {
                int i = scanner.nextInt();
    //            long begin = System.currentTimeMillis();
                int array =a[i][i];
    //            long end = System.currentTimeMillis();
                System.out.println(array);
    //            System.out.println("数组计算的结果: " + array);
    //            System.out.println("花费的时间: " + (end - begin) + " 毫秒");
            }
        }
    }
    
    

    相关文章

      网友评论

          本文标题:整数划分问题

          本文链接:https://www.haomeiwen.com/subject/sfiuvxtx.html