美文网首页生物信息学从零开始学生信必备生物知识
Python爬虫练习(二)爬取pubmed搜索结果doi号并进行

Python爬虫练习(二)爬取pubmed搜索结果doi号并进行

作者: 精神秃头生信小伙儿 | 来源:发表于2021-01-13 21:22 被阅读0次

    继上文的requests+正则解析https://www.jianshu.com/p/c4c041459f58,接下来使用requests+re+xpath解析。用pubmed的高级搜索不知道为什么,比如用关键字1 关键字2搜索,总是会有缺少一个关键字的情况,就算用AND连接也是这样,给文献的搜索造成了很大的麻烦,所以就用爬虫提取关键字都出现的结果的doi号然后调用sci-hub地址下载。
    用法:运行代码。然后输入关键字,如"human evolution" "mammalia“,这是两个关键字,用双引号圈起来,如果你输入human evolution mammlia不加双引号,那么human evolution将不会紧密连在一起搜索,这是三个关键字。接下来确认下载的文件夹,输入y或者n确认是否直接下载pdf还是将下载地址写入download_url.txt这个文件。后续也许还会写爬取Google学术的类似类,也会放到这个module里面,会同时更新到我的github上https://github.com/ijustwanthaveaname/web-crawler/blob/main/%E7%AC%AC%E4%BA%8C%E7%AB%A0%EF%BC%9Arequest%E6%A8%A1%E5%9D%97%E5%9F%BA%E7%A1%80/searchpaper.py

    import requests
    import re
    import os
    from lxml import etree
    
    
    class Searchpubmed:
        def __init__(self, term):
            self.__term = term
            self.__headers = {
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 \
                  (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"
            }
            self.url = "https://pubmed.ncbi.nlm.nih.gov/"
            self.__size, self.__page = 200, 1
            self.__param = {}
            self.param = {
                "term": self.__term,
                "size": self.__size,
                "page": self.__page
            }
            self.__doi, self.__doi_list, self.__down_url = [], [], []
            self.__response, self.__page_text, self.__step_num, self.__results_amount, \
            self.__tree, self.__snippet, self.__citation, self.__title = [None]*8
    
        def get_text(self, url, param):
            self.__response = requests.get(url=url, params=param, headers=self.__headers)
            self.__page_text = self.__response.text
            return self.__page_text
    
        @staticmethod
        def __format_text(xpathelement):
            xpathelement = "".join(xpathelement.xpath(".//text()")).replace("<b>", "").replace("</b>", "").lower()
            return xpathelement
    
        def get_doi(self, page_text):
            self.__tree = etree.HTML(page_text)
            self.__title = self.__tree.xpath("//div[@class='docsum-content']/a")
            self.__snippet = self.__tree.xpath("//div[@class='full-view-snippet']")
            self.__citation = self.__tree.xpath("//span[@class='docsum-journal-citation full-journal-citation']")
            for title, snippet, citation in zip(self.__title, self.__snippet, self.__citation):
                title = self.__format_text(title)
                snipper = self.__format_text(snippet)
                searchtext = title + snipper
                self.__doi = re.search(r"""(doi: (10\..*?)\. )|(doi: (10\.\S+)\.$)""", citation.xpath("./text()")[0])
                self.__doi = [self.__doi.group(2) if self.__doi.group(2) else self.__doi.group(4)] if self.__doi else []
                for kw in self.__term:
                    if kw.lower() in searchtext:
                        continue
                    else:
                        self.__doi = []
                        break
                self.__doi_list += self.__doi
            return self.__doi_list
    
        def get_allpagedoi(self, page_text):
            print("Processing Page1")
            self.__results_amount = int(re.search(r"""<span class="value">(\d+(?:,?\d+)?)</span>.*?results""", page_text,
                                                re.DOTALL).group(1).replace(",", ""))
            self.get_doi(page_text)
            if self.__results_amount % 200 == 0:
                self.__step_num = self.__results_amount / 200 - 1
            else:
                self.__step_num = self.__results_amount // 200
            if self.__step_num:
                for page in range(2, self.__step_num + 2):
                    print(f"Processing Page{page}")
                    self.__size = 200
                    self.__page = page
                    self.__param = {
                        "term": self.__term,
                        "size": self.__size,
                        "page": self.__page
                    }
                    self.__page_text = self.get_text(url=self.url, param=self.__param)
                    self.get_doi(self.__page_text)
            return self.__doi_list
    
        def scihuburl(self, doi_list):
            for doi in doi_list:
                self.__down_url.append(r"https://sci.bban.top/pdf/"+doi+".pdf")
            return self.__down_url
    
        @staticmethod
        def getpdf(down_url, path="./", direct=False):
            downloadpath = os.path.join(path, "download_url.txt")
            if os.path.isfile(downloadpath) and not direct:
                os.remove(downloadpath)
            for doiurl in down_url:
                if direct:
                    r = requests.get(url=down_url)
                    with open(os.path.join(path, os.path.basename(doiurl)), "wb") as f:
                         f.write(r.content)
                else:
                    with open(downloadpath, "a") as u:
                        u.write(doiurl + "\n")
    
    
    if __name__ == "__main__":
        term = input("Please input your keywords: ")
        if '"' in term:
            term = [i for i in term.split('"') if i not in ("", " ")]
        else:
            term = term.split(" ")
        downloaddir= input("Please specify the directory for downloading: ")
        direct = input("Do you want to download the pdf directly?[y/n]")
        while direct not in ["y", "n"]:
            print("You only can input y or n!")
            direct = input("Do you want to download the pdf directly?[y/n]")
        direct = True if direct == "y" else False
        getpub = Searchpubmed(term)
        page_text = getpub.get_text(getpub.url, getpub.param)
        doi_list = getpub.get_allpagedoi(page_text)
        down_url = getpub.scihuburl(doi_list)
        getpub.getpdf(down_url, downloaddir, direct)
    

    相关文章

      网友评论

        本文标题:Python爬虫练习(二)爬取pubmed搜索结果doi号并进行

        本文链接:https://www.haomeiwen.com/subject/sfmdaktx.html