美文网首页
java ThreadPoolExecutor源码研究

java ThreadPoolExecutor源码研究

作者: 测试一下能打几个字 | 来源:发表于2021-02-27 10:38 被阅读0次

    注:关键的代码的部分会有注释。

    唉,好记性不如烂笔头,时间久了都忘记了,写下来以后自己忘记时复习所用

    构造方法

     public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;  // 线程池保存线程数量,即使任务队列为空, 新建时为0
            this.maximumPoolSize = maximumPoolSize;  //最大工作线程数量
            this.workQueue = workQueue; // 任务队列(注意设置任务队列大小例如1000 避免任务队列无限拓展内存溢出)
            this.keepAliveTime = unit.toNanos(keepAliveTime); //获取任务超时时间
            this.threadFactory = threadFactory; //线程工厂(建议使用自定义线程工厂取特殊名字,若程序运行出错jstack工具能快速找到有问题得线程)
            this.handler = handler; // 任务队列满之后处理策略(共4种,具体情况具体选择)
        }
    

    状态属性

        /**ctl 是工作线程和运行状态合并  具体可以看此段代码得上面得注释*/
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
       /***/
        private static final int COUNT_BITS = Integer.SIZE - 3;
       /***/
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
    
        private static final int RUNNING    = -1 << COUNT_BITS;
    
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
    
        private static final int STOP       =  1 << COUNT_BITS;
    
        private static final int TIDYING    =  2 << COUNT_BITS;
    
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
          /**获取运行状态*/
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
         /**获取工作线程数量*/
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    

    submit 方法

       public <T> Future<T> submit(Callable<T> task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task);
            execute(ftask);
            return ftask;
        }
    
    

    execute方法

    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
    
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    此处注释已经详细描述了这个3if具体目的,谈谈个人理解workerCountOf(c) < corePoolSize工作线程小于默认工作线程则添加任务,会创建新工作线程获取任务执行直到不满足上述条件。isRunning(c) && workQueue.offer(command)线程池处于正在运行状态(RUNNING )且向工作队列添加任务成功,重新获取ctl的值。若此时线程不为运行状态(!=RUNNING)那么移除任务,拒绝任务。若此时工作线程数量为0那么添加空任务重新创建工作线程。!addWorker(command, false) 会新增工作线程然后直到最大线程maximumPoolSize,当然失败之后则根绝构造函数的拒绝策略决绝任务即可。

    addWorker

     
    private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                       //若工作线程大于了默认线程或者最大线程就会执行execute方法的第二步或者第三步,直接入队列
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                //新建任务
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                          //加入工作队列
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                      //启动工作队列
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    worker的创建以及run方法

     Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker // 运行runWorker时可中断
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);  //this使用的work本身
            }
    
    
       final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
            //获取任务并执行 
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
              //退出工作线程
                processWorkerExit(w, completedAbruptly);
            }
        }
    
    

    获取任务getTask

      private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
    
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {    
                    //从工作队列中获取任务,注意这里队列使用的poll方法
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    

    退出工作队列processWorkerExit

     private void processWorkerExit(Worker w, boolean completedAbruptly) {
            if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
                decrementWorkerCount();
    
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                completedTaskCount += w.completedTasks;
                workers.remove(w);
            } finally {
                mainLock.unlock();
            }
            //不清楚为啥结束
            tryTerminate();
            
            //主要回收工作线程  正常结束则根据corePoolSize大小回收   非正常结束则添加空的任务
            int c = ctl.get();
            //检查是否为RUNNING    或 SHUTDOWN   
            if (runStateLessThan(c, STOP)) {
                if (!completedAbruptly) {
                    int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                    if (min == 0 && ! workQueue.isEmpty())
                        min = 1;
                    if (workerCountOf(c) >= min)
                        return; // replacement not needed
                }
                addWorker(null, false);
            }
        }
    

    总结执行流程

    线程池拓张过程(不考虑外部关闭线程池)

    若小于corePoolSize 会增加工作线程 。若大于corePoolSize 会直接入队,成功就直接获取任务执行,失败(任务队列满或线程池关闭,这里指线程任务队列满)则会创建新的工作线程。
    

    关于线程池大小边界的判断

    addWorker第2个参数为true则边界corePoolSize,false为maximumPoolSize
    

    线程池回收runWorker,processWorkerExit,completedAbruptly

     若正常结束即completedAbruptly=false,那么会根据corePoolSize 大小回收线程池 completedAbruptly为true那么新增空的工作线程
    

    相关文章

      网友评论

          本文标题:java ThreadPoolExecutor源码研究

          本文链接:https://www.haomeiwen.com/subject/sgtpfltx.html