难度:困难
给定两个大小为m和n的有序少数组nums1和nums2。
请找出这两个有序数组的中位数。要求算法的时间复杂度为O(log(m+n))。
你可以假设nums1和nums2不同时为空
C语言实现:
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size);
int main(int argc, const char * argv[]) {
@autoreleasepool {
int nums1[] = {3};
int nums2[] = {-2,-1};
int length1 = sizeof(nums1)/sizeof(int);
int length2 = sizeof(nums2)/sizeof(int);
double result = findMedianSortedArrays(nums1,length1,nums2,length2);
printf("%f",result);
printf("\n");
}
return 0;
}
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
if (nums1>nums2) {
int* temp = nums1;nums1 = nums2;nums2 = temp;
int tmp = nums1Size;nums1Size = nums2Size;nums2Size = tmp;
}
int iMin = 0, iMax = nums1Size, halfLen = (nums1Size+nums2Size+1)/2;
while (iMin <= iMax) {
int i = (iMin+iMax)/2;
int j = halfLen - i;
if(i < iMax && nums2[j-1]>nums1[i]){
iMin = i + 1;
}else if(i > iMax && nums1[i-1]>nums2[j]){
iMin = i - 1;
}else{
int maxLeft = 0;
if(i==0){
maxLeft = nums2[j-1];
}else if(j==0){
maxLeft = nums1[i-1];
}else{
maxLeft = nums1[i-1]>nums2[j-1]?nums1[i-1]:nums2[j-1];
}
if ((nums1Size+nums2Size)%2==1) {
return maxLeft;
}
int minRight = 0;
if (i==nums1Size) {
minRight = nums2[j];
}else if(j==nums2Size){
minRight = nums1[i];
}else{
minRight = nums2[j]>nums1[i]?nums1[i]:nums2[j];
}
return (maxLeft+minRight)/2.0;
}
}
return 0;
}
Java实现:
public class topic4 {
public static void main(String[] args) {
int[] A = {3};
int[] B = {-2,-1};
double result = findMedianSortedArrays(A,B);
System.out.println("result:"+result);
}
public static double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length;
int n = B.length;
if (m > n) { // to ensure m<=n
int[] temp = A; A = B; B = temp;
int tmp = m; m = n; n = tmp;
}
int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
while (iMin <= iMax) {
int i = (iMin + iMax) / 2;
int j = halfLen - i;
if (i < iMax && B[j-1] > A[i]){
iMin = i + 1; // i is too small
}
else if (i > iMin && A[i-1] > B[j]) {
iMax = i - 1; // i is too big
}
else { // i is perfect
int maxLeft = 0;
if (i == 0) { maxLeft = B[j-1]; }
else if (j == 0) { maxLeft = A[i-1]; }
else { maxLeft = Math.max(A[i-1], B[j-1]); }
if ( (m + n) % 2 == 1 ) { return maxLeft; }
int minRight = 0;
if (i == m) { minRight = B[j]; }
else if (j == n) { minRight = A[i]; }
else { minRight = Math.min(B[j], A[i]); }
return (maxLeft + minRight) / 2.0;
}
}
return 0.0;
}
}
网友评论