美文网首页职业生涯规划大数据机器学习与数据挖掘
成为头号玩家的关键是做好职业规划

成为头号玩家的关键是做好职业规划

作者: 猴子数据分析 | 来源:发表于2018-04-11 12:56 被阅读55次

    一、为什么要学习数据分析?

    近几年来,无论是科研院所,商业巨头还是初创企业,各行各业都在大力开发或者引进人工智能,由于储备不足,导致人工智能人才出现巨大缺口,根据领英2018年发布的全球 AI 领域技术人才分布图显示,中国目前的 AI 人才缺口超过 5 万。所以,学习这个领域的技术,是与时代与时俱进,给自己创造了条件概率。

    全球AI人才数量分布图

    人才供不应求,此领域岗位的薪资也自然水涨船高。那么这个领域的薪水如何呢?

    下面是2017年与数据相关岗位的月工资中位数:

    你也看到了,市面上与数据分析相关的职位很多,叫法也五花八门,真是看着闹心呢。纠结该怎么选择适合自己的职业,以及选定后如何做好职业规划呢?

    二、数据分析师的分类是什么?如何做好职业规划?

    其实,任何行业随着你深入发展,都分为3个阶段:初级,中级,高级。这根打游戏闯关一样,一级一级网上爬。所以,从总体上我给数据分析这个行业也对应规划为这3个阶段,你按下面各个阶段要求来对号入座。

    1、初级数据分析师

    这类数据分析师分为2类:

    1)Excel数据分析师

    工作内容:

    要求熟练使用Excel即可,常说的“表哥”就是这个职位。主要是给没有数据部门的产品经理打个下手。针对产品经理提出的需求来做分析。然后用PPT写一些分析报告即可。

    比如说,之前社群会员面试的一家互联网教育机构,他们的要求就是用Excel整理学生买课的信息,看看哪一门课程最受大家喜欢之类的。

    需要掌握的核心技能:

    Excel,统计概率。

    月薪:

    这种职位的大概薪资在一线城市的话大概税前有5000-7000块(以下说的薪资范围也都是针对一线城市的)

    2)业务部门的数据分析师

    工作内容:

    这类数据分析师在业务部门。不需要会编程,但会的话有加分。比如用python写一些报表自动化。

    常见的职位名称有:

    数据分析师,数据运营,商业分析,战略分析,经营分析,市场行业分析

    需要掌握的核心技能:

    Excel,统计概率,简单的SQL查询。

    常见的职位名称有:

    数据分析师,数据运营,

    月薪:

    薪水大概是6000-10000。

    对于初级数据分析师的职业发展,如果喜欢业务方向,可以往管理端发展,常见的有数据运营经理,数据管理经理,数据产品经理。如果喜专研技术,可以往下面聊的中级数据分析师方向发展

    2、中级数据分析师

    工作内容:

    这类数据分析师一般是IT部门的数据分析师。不仅要会技术还要懂业务,通过发现问题,分析问题,得出结论,为公司的决策做支持。主要干的工作是数据提取、报表开发、撰写分析报告。

    IT部门的数据分析师基本是涵盖了业务部门数据分析师的技能,还要会编程,就这么简单。薪资水平也是两个级别。

    需要的核心技能:

    统计概率,精通SQL,编程语言Python或者是R

    月薪:

    薪水大概是7000-10000+

    3、高级数据分析师

    通过建立模型,预测,偏重于工程,主要技能是编程和算法。

    常见的职位名称有:

    数据开发工程师,数据挖掘工程师,数据仓库工程师,机器学习工程师

    需要的核心技能:

    统计概率,数学,精通SQL,编程语言Python或者是R,机器学习

    月薪:

    薪水在15000+

    数据科学家是这个行业的最终奋斗目标之一。你如果理论能力非常强,可以写paper,那么可以担任研究院的一把手。你如果工程技术能力突出,那么可以担任公司数据科学部门的老大。

    三、如何选择适合自己的岗位呢?

    1、成为一个终身学者

    弄清楚自己的基础是怎么样的,学习转行从事哪个岗位的难度更小些,以及自己更适合哪个岗位。很多人一上来没有任何基础,就开始啃机器学习这是不对的。因为你没有统计概率,数学基础,里面很多专业术语根本无法理解。

    数据科学是一门交叉学科,除了计算机相关知识,还需要有统计学、数学基础,以及一定业务知识。所以可以作为终身职业发展目标,每天学习一点,慢慢积累进步。

    搞清楚各个职位的区别,以及了解自己的基础,知己知彼,就对学习和转行有方向和信心了。最关键的是要在自己的“最佳领域”工作。所谓的“最佳领域”,就是你热爱的、你擅长的、以及社会需要的这3个重叠的领域。

    2、成为某个领域的数据专家

    有的人技术很厉害,但是工作几年发展却受限,成为不了某个领域的专家。是因为今天跳到A领域,明天跳到B领域,导致业务领域知识缺乏。

    然而,数据分析师主要是为所在的行业数据进行分析,所以离不开业务领域的知识。而业务领域知识的积累要靠这个领域多年工作的经验积累。所以简单来说:数据分析师=技术+业务

    如果你是刚开始转行到数据分析领域,那么选择一个与你之前工作领域相关的数据分析师,那么会相对容易些,因为你自带业务知识。

    如果你已经是某个领域的数据分析师,那么跳槽的时候,要考虑换岗不还行,也就是在同一个业务领域深耕,争取成为这个领域的专家,这才能具备不可替代性。避免跳到一个陌生的领域。

    可以关注这几个行业的数据分析师,作为自己感兴趣的领域进行深耕:

    1)互联网金融:风控/信贷/欺诈,杭州有好多公司招互金的。如果想往这个方向发展,可以做一些贷款分析的案例写到简历里。已经转行成功的社群会员 周荣技 当时就是超这个方向准备的:我是如何从制造业转行金融数据分析的?

    2)商业分析:业务经营决策类

    3)线上教育:最近几年比较火,比如好未来,vipkid。

    4)广告推荐类:此类工作应用广泛

    3.如何选择城市,提高你的条件概率呢?

    当我们听到"世界是平的",似乎意味着居住在任何地方都能和外界联系并高效工作,所以家住何处似乎也变得无关紧要。《你属哪座城市》的作者研究证明,这个认识是完全错误的,全球化潮流导致的恰恰是地区差异进一步拉大,选择不同的居住地,意味着完全不同的人生。

    学过概率的人,应该知道条件概率对于一个人命运的影响。不要在沙漠里挖水,而要到水多的地方找机会。世界不是平的,城市大权影响命运。

    数据显示,北京、杭州、上海、深圳、广州成开发者最喜欢工作的城市,杭州成为仅次于北京的开发者偏爱城市,首次突破了北上广深的围栏。在中国西部区域,成都、西安分别成为开发者最喜欢的西南、西北两大城市。还有最近搞的港澳大湾区,都是不错的选择。

    4、成为一个关键时刻不放弃的人

    我观察过身边的人,不管是同学、同事、还是创业合作伙伴,发现大多数人越到关键的时候,越容易放弃。

    然而,那些最终坚持下来的,最后都成功了。所有的成长都源于那关键时刻的一点坚持。大多数人都是刚开始一腔热血,找来一堆资料,但是遇到困难却不想解决,在进步的前一刻放弃了,所以他们从来没有感受过成功的快感。

    在数据分析领域,愿你成为一个关键时刻不放弃的人。

    推荐:看了这篇,再也不怕数据分析面试了

    相关文章

      网友评论

      本文标题:成为头号玩家的关键是做好职业规划

      本文链接:https://www.haomeiwen.com/subject/shbahftx.html