使用Spark实时统计学员播放视频各时长:
Kafka端的CourseLearnProducer生产者生产消息代码如下:
package com.atguigu.qzpoint.producer
import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.spark.{SparkConf, SparkContext}
object CourseLearnProducer {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("courseProducer").setMaster("local[*]")
val ssc = new SparkContext(sparkConf)
// System.setProperty("hadoop.home.dir", "D:\\hadoop\\hadoop-common-2.2.0-bin-master")
// val resultLog = ssc.textFile("file://"+this.getClass.getResource("/course_learn.log").toURI.getPath, 10)
val resultLog = ssc.textFile("/user/atguigu/kafka/course_learn.log", 10)
.foreachPartition(partitoin => {
val props = new Properties()
props.put("bootstrap.servers", "hadoop102:9092,hadoop103:9092,hadoop104:9092")
props.put("acks", "1")
props.put("batch.size", "16384")
props.put("linger.ms", "10")
props.put("buffer.memory", "33554432")
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
partitoin.foreach(item => {
val msg = new ProducerRecord[String, String]("course_learn", item)
producer.send(msg)
})
producer.flush()
producer.close()
})
}
}
具体实现
package com.atguigu.qzpoint.streaming
import java.lang
import java.sql.{Connection, ResultSet}
import com.atguigu.qzpoint.bean.LearnModel
import com.atguigu.qzpoint.util.{DataSourceUtil, ParseJsonData, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
object CourseLearnStreaming {
private val groupid = "course_learn_test1"
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName)
.set("spark.streaming.kafka.maxRatePerPartition", "30")
.set("spark.streaming.backpressure.enabled", "true")
.set("spark.streaming.stopGracefullyOnShutdown", "true")
// .setMaster("local[*]")
val ssc = new StreamingContext(conf, Seconds(3))
val topics = Array("course_learn")
val kafkaMap: Map[String, Object] = Map[String, Object](
"bootstrap.servers" -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> groupid,
"auto.offset.reset" -> "earliest",
"enable.auto.commit" -> (false: lang.Boolean)
)
//查询mysql是否存在偏移量
val sqlProxy = new SqlProxy()
val offsetMap = new mutable.HashMap[TopicPartition, Long]()
val client = DataSourceUtil.getConnection
try {
sqlProxy.executeQuery(client, "select *from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
override def process(rs: ResultSet): Unit = {
while (rs.next()) {
val model = new TopicPartition(rs.getString(2), rs.getInt(3))
val offset = rs.getLong(4)
offsetMap.put(model, offset)
}
rs.close()
}
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
//设置kafka消费数据的参数 判断本地是否有偏移量 有则根据偏移量继续消费 无则重新消费
val stream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
KafkaUtils.createDirectStream(
ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
} else {
KafkaUtils.createDirectStream(
ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
}
//解析json数据
val dsStream = stream.mapPartitions(partitions => {
partitions.map(item => {
val json = item.value()
val jsonObject = ParseJsonData.getJsonData(json)
val userId = jsonObject.getIntValue("uid")
val cwareid = jsonObject.getIntValue("cwareid")
val videoId = jsonObject.getIntValue("videoid")
val chapterId = jsonObject.getIntValue("chapterid")
val edutypeId = jsonObject.getIntValue("edutypeid")
val subjectId = jsonObject.getIntValue("subjectid")
val sourceType = jsonObject.getString("sourceType") //播放设备来源
val speed = jsonObject.getIntValue("speed") //速度
val ts = jsonObject.getLong("ts") //开始时间
val te = jsonObject.getLong("te") //结束时间
val ps = jsonObject.getIntValue("ps") //视频开始区间
val pe = jsonObject.getIntValue("pe") //视频结束区间
LearnModel(userId, cwareid, videoId, chapterId, edutypeId, subjectId, sourceType, speed, ts, te, ps, pe)
})
})
dsStream.foreachRDD(rdd => {
rdd.cache()
//统计播放视频 有效时长 完成时长 总时长
rdd.groupBy(item => item.userId + "_" + item.cwareId + "_" + item.videoId).foreachPartition(partitoins => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
partitoins.foreach { case (key, iters) =>
calcVideoTime(key, iters, sqlProxy, client) //计算视频时长
}
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
})
//统计章节下视频播放总时长
rdd.mapPartitions(partitions => {
partitions.map(item => {
val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
val key = item.chapterId
(key, totaltime)
})
}).reduceByKey(_ + _)
.foreachPartition(partitoins => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
partitoins.foreach(item => {
sqlProxy.executeUpdate(client, "insert into chapter_learn_detail(chapterid,totaltime) values(?,?) on duplicate key" +
" update totaltime=totaltime+?", Array(item._1, item._2, item._2))
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
})
//统计课件下的总播放时长
rdd.mapPartitions(partitions => {
partitions.map(item => {
val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
val key = item.cwareId
(key, totaltime)
})
}).reduceByKey(_ + _).foreachPartition(partitions => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
partitions.foreach(item => {
sqlProxy.executeUpdate(client, "insert into cwareid_learn_detail(cwareid,totaltime) values(?,?) on duplicate key " +
"update totaltime=totaltime+?", Array(item._1, item._2, item._2))
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
})
//统计辅导下的总播放时长
rdd.mapPartitions(partitions => {
partitions.map(item => {
val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
val key = item.edutypeId
(key, totaltime)
})
}).reduceByKey(_ + _).foreachPartition(partitions => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
partitions.foreach(item => {
sqlProxy.executeUpdate(client, "insert into edutype_learn_detail(edutypeid,totaltime) values(?,?) on duplicate key " +
"update totaltime=totaltime+?", Array(item._1, item._2, item._2))
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
})
//统计同一资源平台下的总播放时长
rdd.mapPartitions(partitions => {
partitions.map(item => {
val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
val key = item.sourceType
(key, totaltime)
})
}).reduceByKey(_ + _).foreachPartition(partitions => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
partitions.foreach(item => {
sqlProxy.executeUpdate(client, "insert into sourcetype_learn_detail (sourcetype_learn,totaltime) values(?,?) on duplicate key " +
"update totaltime=totaltime+?", Array(item._1, item._2, item._2))
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
})
// 统计同一科目下的播放总时长
rdd.mapPartitions(partitions => {
partitions.map(item => {
val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
val key = item.subjectId
(key, totaltime)
})
}).reduceByKey(_ + _).foreachPartition(partitons => {
val sqlProxy = new SqlProxy()
val clinet = DataSourceUtil.getConnection
try {
partitons.foreach(item => {
sqlProxy.executeUpdate(clinet, "insert into subject_learn_detail(subjectid,totaltime) values(?,?) on duplicate key " +
"update totaltime=totaltime+?", Array(item._1, item._2, item._2))
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(clinet)
}
})
})
//计算转换率
//处理完 业务逻辑后 手动提交offset维护到本地 mysql中
stream.foreachRDD(rdd => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
for (or <- offsetRanges) {
sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
Array(groupid, or.topic, or.partition.toString, or.untilOffset))
}
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
})
ssc.start()
ssc.awaitTermination()
}
/**
* 计算视频 有效时长 完成时长 总时长
*
* @param key
* @param iters
* @param sqlProxy
* @param client
*/
def calcVideoTime(key: String, iters: Iterable[LearnModel], sqlProxy: SqlProxy, client: Connection) = {
val keys = key.split("_")
val userId = keys(0).toInt
val cwareId = keys(1).toInt
val videoId = keys(2).toInt
//查询历史数据
var interval_history = ""
sqlProxy.executeQuery(client, "select play_interval from video_interval where userid=? and cwareid=? and videoid=?",
Array(userId, cwareId, videoId), new QueryCallback {
override def process(rs: ResultSet): Unit = {
while (rs.next()) {
interval_history = rs.getString(1)
}
rs.close()
}
})
var effective_duration_sum = 0l //有效总时长
var complete_duration_sum = 0l //完成总时长
var cumulative_duration_sum = 0l //播放总时长
val learnList = iters.toList.sortBy(item => item.ps) //转成list 并根据开始区间升序排序
learnList.foreach(item => {
if ("".equals(interval_history)) {
//没有历史区间
val play_interval = item.ps + "-" + item.pe //有效区间
val effective_duration = Math.ceil((item.te - item.ts) / 1000) //有效时长
val complete_duration = item.pe - item.ps //完成时长
effective_duration_sum += effective_duration.toLong
cumulative_duration_sum += effective_duration.toLong
complete_duration_sum += complete_duration
interval_history = play_interval
} else {
//有历史区间进行对比
val interval_arry = interval_history.split(",").sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt))
val tuple = getEffectiveInterval(interval_arry, item.ps, item.pe)
val complete_duration = tuple._1 //获取实际有效完成时长
val effective_duration = Math.ceil((item.te - item.ts) / 1000) / (item.pe - item.ps) * complete_duration //计算有效时长
val cumulative_duration = Math.ceil((item.te - item.ts) / 1000) //累计时长
interval_history = tuple._2
effective_duration_sum += effective_duration.toLong
complete_duration_sum += complete_duration
cumulative_duration_sum += cumulative_duration.toLong
}
sqlProxy.executeUpdate(client, "insert into video_interval(userid,cwareid,videoid,play_interval) values(?,?,?,?) " +
"on duplicate key update play_interval=?", Array(userId, cwareId, videoId, interval_history, interval_history))
sqlProxy.executeUpdate(client, "insert into video_learn_detail(userid,cwareid,videoid,totaltime,effecttime,completetime) " +
"values(?,?,?,?,?,?) on duplicate key update totaltime=totaltime+?,effecttime=effecttime+?,completetime=completetime+?",
Array(userId, cwareId, videoId, cumulative_duration_sum, effective_duration_sum, complete_duration_sum, cumulative_duration_sum,
effective_duration_sum, complete_duration_sum))
})
}
/**
* 计算有效区间
*
* @param array
* @param start
* @param end
* @return
*/
def getEffectiveInterval(array: Array[String], start: Int, end: Int) = {
var effective_duration = end - start
var bl = false //是否对有效时间进行修改
import scala.util.control.Breaks._
breakable {
for (i <- 0 until array.length) {
//循环各区间段
var historyStart = 0 //获取其中一段的开始播放区间
var historyEnd = 0 //获取其中一段结束播放区间
val item = array(i)
try {
historyStart = item.split("-")(0).toInt
historyEnd = item.split("-")(1).toInt
} catch {
case e: Exception => throw new Exception("error array:" + array.mkString(","))
}
if (start >= historyStart && historyEnd >= end) {
//已有数据占用全部播放时长 此次播放无效
effective_duration = 0
bl = true
break()
} else if (start <= historyStart && end > historyStart && end < historyEnd) {
//和已有数据左侧存在交集 扣除部分有效时间(以老数据为主进行对照)
effective_duration -= end - historyStart
array(i) = start + "-" + historyEnd
bl = true
} else if (start > historyStart && start < historyEnd && end >= historyEnd) {
//和已有数据右侧存在交集 扣除部分有效时间
effective_duration -= historyEnd - start
array(i) = historyStart + "-" + end
bl = true
} else if (start < historyStart && end > historyEnd) {
//现数据 大于旧数据 扣除旧数据所有有效时间
effective_duration -= historyEnd - historyStart
array(i) = start + "-" + end
bl = true
}
}
}
val result = bl match {
case false => {
//没有修改原array 没有交集 进行新增
val distinctArray2 = ArrayBuffer[String]()
distinctArray2.appendAll(array)
distinctArray2.append(start + "-" + end)
val distinctArray = distinctArray2.distinct.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt))
val tmpArray = ArrayBuffer[String]()
tmpArray.append(distinctArray(0))
for (i <- 1 until distinctArray.length) {
val item = distinctArray(i).split("-")
val tmpItem = tmpArray(tmpArray.length - 1).split("-")
val itemStart = item(0)
val itemEnd = item(1)
val tmpItemStart = tmpItem(0)
val tmpItemEnd = tmpItem(1)
if (tmpItemStart.toInt < itemStart.toInt && tmpItemEnd.toInt < itemStart.toInt) {
//没有交集
tmpArray.append(itemStart + "-" + itemEnd)
} else {
//有交集
val resultStart = tmpItemStart
val resultEnd = if (tmpItemEnd.toInt > itemEnd.toInt) tmpItemEnd else itemEnd
tmpArray(tmpArray.length - 1) = resultStart + "-" + resultEnd
}
}
val play_interval = tmpArray.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt)).mkString(",")
play_interval
}
case true => {
//修改了原array 进行区间重组
val distinctArray = array.distinct.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt))
val tmpArray = ArrayBuffer[String]()
tmpArray.append(distinctArray(0))
for (i <- 1 until distinctArray.length) {
val item = distinctArray(i).split("-")
val tmpItem = tmpArray(tmpArray.length - 1).split("-")
val itemStart = item(0)
val itemEnd = item(1)
val tmpItemStart = tmpItem(0)
val tmpItemEnd = tmpItem(1)
if (tmpItemStart.toInt < itemStart.toInt && tmpItemEnd.toInt < itemStart.toInt) {
//没有交集
tmpArray.append(itemStart + "-" + itemEnd)
} else {
//有交集
val resultStart = tmpItemStart
val resultEnd = if (tmpItemEnd.toInt > itemEnd.toInt) tmpItemEnd else itemEnd
tmpArray(tmpArray.length - 1) = resultStart + "-" + resultEnd
}
}
val play_interval = tmpArray.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt)).mkString(",")
play_interval
}
}
(effective_duration, result)
}
}
网友评论