美文网首页Java
密码学基础(三):非对称加密(RSA算法原理)

密码学基础(三):非对称加密(RSA算法原理)

作者: 康小曹 | 来源:发表于2019-10-22 09:27 被阅读0次

什么是RSA加密

加密和解密使用的是两个不同的秘钥,这种算法叫做非对称加密。非对称加密又称为公钥加密,RSA只是公钥加密的一种。

数字签名 && 数字证书

现实生活中有签名,互联网中也存在签名。签名的作用有两个,一个是身份验证,一个是数据完整性验证。数字签名通过摘要算法来确保接收到的数据没有被篡改,再通过签名者的私钥加密,只能使用对应的公钥解密,以此来保证身份的一致性。

数字证书是将个人信息和数字签名放到一起,经由CA机构的私钥加密之后生成。当然,不经过CA机构,由自己完成签名的证书称为自签名证书。CA机构作为互联网密码体系中的基础机构,拥有相当高级的安全防范能力,所有的证书体系中的基本假设或者前提就是CA机构的私钥不被窃取,一旦 CA J机构出事,整个信息链将不再安全。

CA证书的生成过程如下:


CA机构颁发的数字证书

证书参与信息传递完成加密和解密的过程如下:


加密和解密

欧拉函数

互质关系:互质是公约数只有1的两个整数,1和1互质,13和13就不互质了。
欧拉函数:表示任意给定正整数 n,在小于等于n的正整数之中,有多少个与 n 构成互质关系,其表达式为:

euler函数

其中,若P为质数,则其表达式可以简写为:

情况一:φ(1)=1
1和任何数都互质,所以φ(1)=1;

情况二:n 是质数, φ(n)=n-1
因为 n 是质数,所以和小于自己的所有数都是互质关系,所以φ(n)=n-1;

情况三:如果 n 是质数的某一个次方,即 n = p^k ( p 为质数,k 为大于等于1的整数),则φ(n)=(p-1)p^(k-1)
因为 p 为质数,所以除了 p 的倍数之外,小于 n 的所有数都是 n 的质数;

情况四:如果 n 可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

情况五:基于情况四,如果 p1 和 p2 都是质数,且 n=p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)

而 RSA 算法的基本原理就是欧拉函数中的第五种情况,即: φ(n)=(p1-1)(p2-1);

模反元素

如果两个正整数 a 和 n 互质,那么一定可以找到整数 b,使得 ab-1 被 n 整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”。欧拉定理可以用来证明模反元素必然存在。

模反元素

可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。

RSA算法原理

1、随机选择两个质数并计算乘积

n=p x q = 3233,3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。

在实际使用中,一般场景下选择1024位长度的数字,更高安全要求的场景下,选择2048位的数字,这里作为演示,选取p=61和q=53;

2、计算n的欧拉函数φ(n)。

因为n、p、q都为质数,所以φ(n) = (p-1)(q-1)=60×52= 3120

3、随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质,即1<e<3120

注意,这里是和φ(n) 互互质而不是n!假设选择的值是17,即 e=17;

4、计算e对于φ(n)的模反元素d

模反元素就是指有一个整数 d,可以使得 ed 被 φ(n) 除的余数为1。表示为:(ed-1)=φ(n)y --> 17d=3120y+1,算出一组解为(2753,15),即 d=2753,y=-15,也就是(172753-1)/3120=15。

注意,这里不能选择3119,否则公私钥相同??

5、生成结果

公钥:(n,e)=(3233,2753)
私钥:(n,d)=(3233,17)

为什么无法破解

公钥是公开的,也就是说m=p*q=3233是公开的,那么怎么求e被?e是通过模反函数求得,17d=3120y+1,e是公开的等于17,这时候想要求d就要知道3120,也就是φ(n),也就是φ(3233),说白了,3233是公开的,你能对3233进行因数分解,你就能知道d,也就能破解私钥。

正常情况下,3233我们可以因数分解为61*53,但是对于很大的数字,人类只能通过枚举的方法来因数分解,所以RSA安全性的本质就是:对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

人类已经分解的最大整数是:


分解质因数

这个人类已经分解的最大整数为232个十进制位,768个二进制位,比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。所以实际使用中的1024位秘钥基本安全,2048位秘钥绝对安全。

网上有个段子:

破解 HTTPS 的三种方法

RSA的加密和解密过程

已经得出公私钥的组成:
公钥:(n,e)=(3233,2753)
私钥:(n,d)=(3233,17)
加密的过程就是

m^e ≡ c (mod n)

解密过程如下:

c^d ≡ m (mod n)

其中 m 是要被加密的数字,c 是加密之后输出的结果,且 m < n ,其中解密过程一定成立可以证明的,这里省略证明过程。

总而言之,RSA的加密就是使用模反函数对数字进行加密和求解过程,在实际使用中因为 m < n必须成立,所以就有两种加密方法:

  • 分段加密

  • 使用对称加密加密原文,使用RSA加密对称加密中使用的秘钥

对称加密和非对称加密的区别和联系

对称加密存在虽然快速,但是存在致命的缺点就是秘钥需要传递。非对称加密虽然不需要传递秘钥就可以完成加密和解密,但是其致命缺点是速度不够快,不能用于高频率,高容量的加密场景。所以才有了两者的互补关系,在传递对称加密的秘钥时采用非对称加密,完成秘钥传送之后采用对称加密,如此就可以完美互补。

相关文章

  • 6.1 密码学专题 - 非对称加密算法 - RSA 算法

    密码学专题 - 非对称加密算法 - RSA 算法 6.1 RSA 算法 第一个较完善的非对称加密算法 RSA,它既...

  • RSA加密

    RSA加密为非对称加密实现 对称加密:加密解密使用同一个算法 非对称加密:加密和解密使用不同算法 rsa加密原理 ...

  • RSA非对称加解密原理及示例代码

    RSA非对称加解密可以实现安全传输,本文简单介绍一下其原理和实现代码 RSA加密算法 RSA加密算法是一种非对称加...

  • iOS证书相关概念梳理

    非对称加密 RSA算法原理(一)RSA算法原理(二) 摘要算法 另一个神奇的算法就是摘要算法。摘要算法是指,可以将...

  • RSA加密转16进制

    知识补充: RSA算法是一种非对称加密算法,常被用于加密数据传输. RSA基本原理: RSA使用"秘匙...

  • kotlin版本RSA非对称加密解密与分段加密解密

    基于kotlin语言的RSA非对称加密解密与分段加密解密 RSA非对称加密 RSA非对称加密的具体算法与来源我就不...

  • 3.2 RSA算法简介

    非对称加密技术 -- RSA算法 RSA算法是流行最广泛的非对称加密算法,也是唯一的基于因式分解的非对称加密算法。...

  • 非对称加密算法RSA 学习

    非对称加密算法RSA 学习 RSA加密算法是一种非对称加密算法。RSA是1977年由罗纳德·李维斯特(Ron Ri...

  • ssh免密登录 scp免密传输

    我们采用RSA非对称加密算法,原理: 如果,A要和B通讯,则: (1). A通过RSA算法生成公钥(.pub)和私...

  • RSA原理及应用学习小记

    RSA原理及应用 密码学发展,经理了很长了编码加密,到后来的对称加密, 及上世纪70年代后的非对称加密RSA RS...

网友评论

    本文标题:密码学基础(三):非对称加密(RSA算法原理)

    本文链接:https://www.haomeiwen.com/subject/sinimctx.html