美文网首页
训练笔记 Fine tune my first semantic

训练笔记 Fine tune my first semantic

作者: 麦兜胖胖次 | 来源:发表于2017-01-09 16:25 被阅读0次

    正如Deeplab-v2所做的一样,每经过一定的iteration对learning rate进行调整,无论是使用step policy还是poly policy,都需要由当前迭代次数来决定。翻了各种文档和issue,总结出在mxnet中,目前有两种方式可以实现。
    参考:
    https://github.com/dmlc/mxnet/issues/540
    https://github.com/dmlc/mxnet/issues/625

    • 1 使用mxnet/python/mxnet/lr_scheduler下提供的方法:
      具体可以参考example/image_classification下的fit.py中,在mx.model.Feedforward中给出lr_scheduler参数。关于如何实现lr_scheduler的例子:
    def _get_lr_scheduler(args, kv):
        if 'lr_factor' not in args or args.lr_factor >= 1:        
          return (args.lr, None)    
        epoch_size = args.num_examples / args.batch_size    
        if 'dist' in args.kv_store:        
          epoch_size /= kv.num_workers    
        begin_epoch = args.load_epoch if args.load_epoch else 0    
        step_epochs = [int(l) for l in args.lr_step_epochs.split(',')]    
        lr = args.lr    
        for s in step_epochs:        
          if begin_epoch >= s:            
            lr *= args.lr_factor    
        if lr != args.lr:        
          logging.info('Adjust learning rate to %e for epoch %d' %(lr, begin_epoch))    
      
        steps = [epoch_size * (x-begin_epoch) for x in step_epochs if x-begin_epoch > 0]    
        return (lr, mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_factor))
    

    如何调用:

      lr, lr_scheduler = _get_lr_scheduler(args, kv)
    
      # create model
      model = mx.model.FeedForward(    
              ......
              learning_rate = lr,    lr_scheduler  = lr_scheduler,    
              ......  )
    

    或者在lenet中:

    model = mx.model.FeedForward(ctx=dev, symbol=lenet, num_epoch=20,  
                                                        learning_rate=0.05, momentum=0.9, wd=0.00001, 
                                                        lr_scheduler=mx.misc.FactorScheduler(step=5))
    

    但是由于我使用的不是feedforward方法,而是bind和fit,且feedforward对应的是single data-single output的结构,所以这种方法并不适用于我。

    • 2 直接在fit函数中自己写一个epoch_end_callback:


      Learning rate policy adopted by Deeplab-v2
      # my code
      def lr_callback(epoch, net, net_args, net_auxs):
        opt.lr = args.base_lr * (1 - float(epoch)/num_epoch)**0.9
    
      mod.fit(train, val,
            batch_end_callback =   mx.callback.Speedometer(batch_size, 30)
            epoch_end_callback = [checkpoint, lr_callback],
            optimizer = opt, num_epoch = num_epoch)
    
    • 3 在optimizer中给出lr_scheduler,我的实现如下:
    opt = mx.optimizer.create('sgd', learning_rate=args.base_lr,
                                              momentum=0.9, wd=0.0005,
                                              rescale_grad=float(1)/len(contexts),
                                              lr_scheduler=mx.lr_scheduler.MultiFactorScheduler([10,20,30], 0.9))
    # the first parameter of scheduler is the list of all those changing point
    
    lr_scheduler.MultiFactorScheduler

    在step那里需要用np.linspace()的话记得要转成list(),函数不接受ndarray的类型。如果需要更灵活的话,可以自己在lr_scale.py写一个满足需求的scheduler。

    相关文章

      网友评论

          本文标题:训练笔记 Fine tune my first semantic

          本文链接:https://www.haomeiwen.com/subject/sirhbttx.html