美文网首页
推荐系统架构(附ppt&代码)

推荐系统架构(附ppt&代码)

作者: BlueMargarita | 来源:发表于2017-10-23 15:01 被阅读0次

Part1.乐视网视频推荐系统 

推荐系统:和传统的推荐系统架构无异(基础建模+规则)

数据模块特点:用户反馈服务数据-》kv 缓存-》log存储

                         行为日志-》解析/聚合-》session log-》cf/用户模型

系统推荐流程:

     召回:聚类算法;tensorflow(topN);分类,top个性化标签(微软lda);cf/als;人工干预

     排序:时效+相似度+gbdt/ LR

     过滤

     策略调整:分类多样性

调优—提升较明显的组合:

    1.分类+标签倒排排序

    2.itemcf+als召回+分类多样性

    3.itemcf召回优化排序+此召回的用户反馈调权占比40%

    4.item召回打分引入曝光

短视频冷启动:排序未点击的会马上落下

Part2.RoadMap of YouTube isrecommendation System(Ke Wang)PPT

Youtube推荐系统的发展历程:

    1.get tags:user共现图/pagerank思想 && 引用视频相关视频中top tags

    2.基于user兴趣推荐多级相关视频

    3.视频排序:质量,多样性,多频道源

    4.相关视频推荐优化:避免cf缺点(cf缺点:新鲜性 and 长尾)

        1)retrieval with weighted topic(短期内观看视频中大众类型标签推荐计算)

        2)防止(1),learning topic transitions

        用户行为去拟合topic的权重大小

  5.优化应用:deep learning

召回建模中的策略

    deep learning输入embedding:历史搜索+观看+用户特征,最后输出概率;

    显性反馈没有隐含反馈重要;

    用户最近100条兴趣 better than  最近100天用户的兴趣;

    feed流中:放弃序列输入 防止过拟合用户模块

    新用户的兴趣挖掘:时序行为挖掘 better 随机行为

ranking 建模:(用户观看时长为指标)

    dnn架构和召回类似。

    dnn输入:视频,视频均值,用户语言,视频语言,距离上次观看时间开方,原值,平方;先前的印象原值,开方,平方;等embedding

输出:加权lr(正样本评估加权)

Part3 58同城智能推荐系统的演进和实践 詹坤林

评价指标:推荐点击占比,推荐转化比,点击率,转化率,覆盖率(评价长尾)

特点:用户标签和帖子标签很完善

用户标签挖掘:

     标签会有分类:购房偏好,租房偏好,购车偏好,通用属性(时间,质量分,关键词,图片),动态属性(pv、uv、阅读时长)等

召回:

     兴趣召回(基于兴趣标签检索),热门召回(统计ctr,平滑处理),地域召回,关联规则,协同过滤(实时itemCF),SVD(效果一般),DNN

召回融合:

    1)分级先后顺序融合

    2)调制融合(比例融合)

排序模型:

    单一模型LR/XGBoost/FM

    融合模型:XGBoost+LR/FM

    深度模型:FNN(提升2%) / Wide deep/CNN

多目标优化(多权):

    点击率,转化率,停留时长预估(回归,分类)

学习平台:

    深度学习在kubernets中融合tensorflow,caffe,Distribute tensor flow

    机器学习:Yarn融合MLib,DMc

    深度学习和机器学习平台通过hdfs打通

规则迭代(AB test):

    去重策略/打散列表/产品逻辑/页面展示迭代

    A/Btest(有web操作页面,可供全公司配置实验)

请求分流/数据监控

A/B多层实验架构

系统优点:

     耦合性低,扩展性佳;协同开发,快速迭代;

关键技术

    58自研RPC框架SCF

系统立体监控:

    业务总体监控/关键模块监控(请求量,失败量,平均延时,最大值,最小值)+告警阈值

数据监控:

    推荐埋点设计:每一次曝光seqNo,进入点击click标志链式关联;沟通时长决定是否打上埋点commucate

埋点开发测试流程:

    埋点文档沉淀+EtL抽取文档

效果数据统计:

     hive上用Kylin(多维数据)做可视化,邮件报警和监控

推荐效果:

    推荐占比20%~30%,流量2亿,响应30ms

Part4 58个性化推荐push系统 

推送的作用:

    服务用户,提高日活和留存,活动运营和推广

推送点击率预估&效果数据监控

原策略bug:条数限制,先来先推,精准度差,干扰性大

推送控制系统:

     机制化推送+运营推送—》通用推送平台—〉消息总线—》推送平台

推送点击率预估:样本(推送点击1;推送未点击0);特征工程(用户行为特征,推送上下文环境特征:周几,推送信息特征:软文);模型算法:xgboost(分布式版)

模型离线评价:批次召回率 整体召回率

相关文章

  • 推荐系统架构(附ppt&代码)

    Part1.乐视网视频推荐系统 推荐系统:和传统的推荐系统架构无异(基础建模+规则) 数据模块特点:用户反馈服务数...

  • Netty源码分析1 - Promise 异步框架的设计

    一、使用姿势 二、代码架构 三、代码分析 附、bug记录 一、使用姿势 1.1、回调方式(推荐 - 完全异步) 流...

  • 推荐系统

    推荐系统基础 推荐系统简介 了解推荐相关常用概念 知道推荐系统的工程架构和算法架构 知道推荐系统的常用算法 知道协...

  • 推荐系统--推荐系统架构

    推荐系统架构 花了点时间,梳理了一下公司推荐系统整个流程,这是公司正在运用的推荐系统架构。 数据获取 抽取线上业务...

  • 推荐系统

    1.论文 论文浅尝 | 一种用于新闻推荐的深度知识感知网络 2.原理与方法 一文教你构建图书推荐系统【附代码】

  • iOS架构

    这里说几个概念:iOS系统框架:iOS系统架构:iOS架构:iOS 代码架构:iOS架构师:iOS架构设计: iO...

  • 推荐系统--系统架构

    这段时间公司的事情比较多,没有时间继续写推荐系统相关的内容。现在继续来学习推荐系统,这篇作为推荐系统第一阶段(不知...

  • 推荐系统-架构

    关键字: MongoDB 情感分析 协同过滤推荐 评测PRF 架构思路:要有一个情感分析器,输入一段文字给出正向o...

  • 推荐系统架构

    今天带来的是推荐系统架构的总览,围绕AB测试、微服务与模型更新三大部分展开,后续会不断展开详细内容,欢迎关注! A...

  • 推荐系统架构-1 推荐系统

    目录 一、推荐系统 1、推荐系统介绍 1.1 什么是推荐系统 1.2 推荐方法 1.3 推荐系统的应用 1.4 评...

网友评论

      本文标题:推荐系统架构(附ppt&代码)

      本文链接:https://www.haomeiwen.com/subject/skbiuxtx.html