编者注,
昨天搜集数据挖掘相关方法,找到了这个,觉得很好,于是果断自己加工一下,结构更加清晰。
数据挖掘常用的方法
分类,回归、聚类、关联规则
数据挖掘的位置
在大数据时代,数据挖掘是最关键的工作。
数据挖掘的意义
大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。
数据挖掘的方式
其主要基于人工智能,机器学习,模式学习,统计学等。
通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。
目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。
下面具体讨论数据挖掘的方法。
大数据挖掘常用的方法
分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。
这些方法从不同的角度对数据进行挖掘。
(1)分类(Classification)
分类是找出数据库中的一组数据对象的共同特点,并按照分类模式,将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。
可以应用到涉及到应用分类、趋势预测中。
如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。
(2)回归分析(Regression)
回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系,来发现属性值之间的依赖关系。
它可以应用到对数据序列的预测及相关关系的研究中去。
在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。
(3)聚类(Clustering)
聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。
属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。
(4)关联规则
关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。
关联规则的挖掘过程主要包括两个阶段:
第一,从海量原始数据中找出所有的高频项目组;
第二,为从这些高频项目组产生关联规则。
关联规则挖掘技术,已经被广泛应用于金融行业企业中,用以预测客户的需求。
各银行在自己的ATM 机上,通过捆绑客户可能感兴趣的信息,供用户了解并获取相应信息来改善自身的营销。
(5)神经网络方法
神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的,以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。
典型的神经网络模型主要分为三大类:
第一类,用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;
第二类,用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。
第三类,用于聚类的自组织映射方法,以ART 模型为代表。
虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。
(6)Web数据挖掘
Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。
当前越来越多的Web 数据都是以数据流的形式出现的,因此对Web 数据流挖掘就具有很重要的意义。
目前常用的Web数据挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。
这三种算法提到的用户都是笼统的用户,并没有区分用户的个体。
目前Web 数据挖掘面临着一些问题,
包括:用户的分类问题、网站内容时效性问题,用户在页面停留时间问题,页面的链入与链出数问题等。
在Web 技术高速发展的今天,这些问题仍旧值得研究并加以解决。
原文:http://www.vsharing.com/k//2013-10/690272.html
编辑 Juan Winterling
网友评论