美文网首页微控新能源技术
高温超导飞轮储能介绍

高温超导飞轮储能介绍

作者: iminriver | 来源:发表于2017-12-01 12:54 被阅读0次

    Introduction to HTS Flywheel Energy Storage

    1. 储能方式介绍

    储能技术有哪几种,各自的特点是什么?

    2. 飞轮储能介绍

    2.1 飞轮储能轴承

    从图中可以看出,一个飞轮储能系统大致分为以下几个部分:

    真空壳体

    真空壳体是飞轮储能装置中的辅助系统。将高速旋转的飞轮转子至于真空状态下,主要是为了减少飞轮转子系统的风阻损耗。Acamley 等的研究结果表明:真空度过高会降低储能系统内部的散热能力,导致飞轮转子的温度升高。相比于高真空度的状态,氦气环境下更有利于减小风损。

    飞轮转子

    早期的飞轮转子多使用钢或铝合金材料,这类转子具有重量大、转速慢、储能密度低等缺点。为了提高其性能,目前多以高性能连续纤维作为增强体,以树脂材料作为基体,采用预应力缠绕技术与多环过盈配合相结合的工艺制造出重量轻、储能密度大的复合材料飞轮转子。法国Socomec 公司和美国 Beacon Power 公司生产的储能系统均采用了复合材料飞轮转子。

    支撑系统

    轮储能系统的轴承支撑方式主要包括:机械轴承、被动磁轴承和主动磁轴承。当飞轮转子在高速旋转的时候,传统的机械轴承会消耗较多的能量,为了提高整个储能系统的效率,多采用磁轴承作为低能耗的支撑方式,但为了避免磁轴承失效对转子系统造成的损伤,目前多选用机械辅助轴承配合磁轴承的支撑方案。

    动/发一体机

    动/发一体机是整个飞轮储能系统的核心动力源。机械能与电能之间的转换就是通过动/发一体机的相互转换实现的。使用动/发一体机可以大大提高整个系统的空间使用率,降低储能系统的总体重量。

    电力转换器

    电力转换器是储能飞轮系统中能量转换控制的关键部件,它具有调频、恒压、整流等功能。电力转换器的应用提高了飞轮系统的灵活性和可控性。在充电过程中,电力转换器采用恒转矩控制和恒功率控制两种变频控制方式,将交流电转换成直流电,驱动电机使飞轮加速旋转。当飞轮达到最高转速时,电力转换装置提供低压以便维持飞轮转速,降低转子系统的自身能量损耗。

    2.2 高温超导轴承

    早在 1945 年便有人提出了应用超导体实现磁悬浮轴承的设想,但直到 1987 年发现可工作在液氮温区(77 K)的 YBCO 高温超导体材料后,才使这一想法得以成为现实。高温超导体材料独具的磁通钉扎特性,使 SMB 在无任何外界控制的条件下就可以实现稳定的悬浮,向研究者展示出巨大的吸引力。

    基于高温超导体材料的磁通钉扎特性,SMB 展现出许多优点:

    无源自稳定悬浮,无需额外控制环节。

    转速高,已实现 520 000 r/min 实验速度。

    损耗小,摩擦系数仅 10^-7,比机械轴承(10^−3)和常导(电磁)磁悬浮轴承(10^−4)的摩擦系数低几个数量级。与现有的机械轴承和主动磁轴承相比,SMB 优越性主要体现在以上三点。

    飞轮储能轴承主要分为三大类:机械轴承,AMB主动磁轴承,SMB超导磁轴承。它们的比较如下:

    Paste_Image.png

    表1:机械轴承、主动磁轴承和SMB性能比较

    超导磁轴承主动磁轴承机械轴承

    摩擦系数1e-71e-41e-3

    磨损无无有

    控制系统无有无

    辅助部件低温装置传感器无

    速度极限无无有

    承载能力低高高

    刚度低高高

    那么这里的数量级到底是什么概念呢?

    2.3 碳纤维飞轮

    碳纤维飞轮

    飞轮转子材料性能比较

    材料名称材料强度GPa材料密度kg/m3储能密度Wh/kg

    铝合金0.6280036.1

    高强度钢2.7800056.8

    E玻璃纤维3.52540231.9

    S玻璃纤维4.82520320.6

    Kevlar纤维3.81450441.1

    光谱纤维3.0970520.6

    碳纤维T7007.01780662.0

    碳纤维T100010.01780945.7

    [1]中国继续“白菜化”碳纤维 T700级200元每公斤

    当时国内已经出现的较大的碳纤维企业包括:上海石化公司腈纶事业部、中复神鹰碳纤维有限公司、浙江巨鑫碳纤维有限公司、西安康本材料有限公司、沈阳中恒新材料有限公司、吉林市碳纤维高新技术产业化基地、哈尔滨天顺化工科技开发有限公司、金发科技碳纤维、中国石油天然气集团公司等。

    2.4 电力电子部分

    Paste_Image.png

    Paste_Image.png

    2.5 模块化和集群设计

    Paste_Image.png

    Paste_Image.png

    成本测算

    特斯拉 Powerwall

    10 kWh 1.3万美元

    10度电 3500美元

    作为对照,Primus Power生产的250kW液流电池价格为500美元/kWh,Aquion的纳离子电池价格大致相当。穆迪2015年1月的报告估计,“今天的电池投资成本接近500-600 美元/kWh。”

    储能主要分为两种,能量型和功率型。能量型储能容量大,反应速度慢,充放电次数受限。功率型响应速度快,容量小。

    无论是超导磁储能还是高温超导飞轮储能,最主要的优势都在于放电功率大。自放电率比起化学储能优势不明显,但也可以做到差不多,超导线圈和高温超导轴承,GM制冷技术也比较成熟,国内T-800碳纤维线材,YBCO带材都能量产。

    最主要的问题就是价格上。特斯拉的Powerwall可以做到3500美金,10kWh的电池,一般化学电池500美金/kWh。SMES国内样机能做到1MJ,美帝100MJ,日本2.4GJ。注意1kWh=3.6MJ,而1MJ的样机无论是体积还是重量还是价格都高于Powerwall,其优势只在于循环次数、放电深度和放电功率等。高温超导飞轮储能也是如此,其单位质量/体积能量甚至不如SMES,但是它的电力电子部分要简单些,毕竟飞轮+电机,还不需要屏蔽强磁。HTS-FESS国内样机1MJ,美帝波音10kWh。

    给大家算臂章,2GJ=555度电,一度电5毛钱,功率型最大也就存280块钱的电,然而这个造价至少几百万RMB。所以功率型储能作为大规模储能的成本还是太高。(不然咋叫功率型)

    所以目前有的应用都是军事领域和示范工程,大规模应用的话成本高了点。目前的出路在于多元复合储能,错配能量型和功率型储能以达到能量管理和动态调节的平衡。

    重新读了遍题目,倍感惊恐,全篇跑题,重新作答如下:

    技术性问题个人认为没有,毕竟美帝日德都花钱砸出一条道了。

    关于微控新能源

    深圳微控新能源技术有限公司(简称微控或微控新能源)是全球物理储能技术领航者。公司全球总部位于深圳,业务覆盖北美、欧洲、亚洲、拉美等地区,凭借“安全、可靠、高效”的全球领先的磁悬浮能源技术,产品与服务广泛受到华为、GE、ABB、西门子、爱默生等众多世界500强企业的信赖。

    面向未来能源“更清洁、高密度、数字化”的三大趋势,公司持续致力于为战略性新兴产业提供能源运输、储存、回收、数据化管理提供系统解决方案。

    相关文章

      网友评论

        本文标题:高温超导飞轮储能介绍

        本文链接:https://www.haomeiwen.com/subject/suaibxtx.html