基于连通域的图像分割案例
可以用于物体计数和区域分割
码上 后期进行更改优化
#include <opencv2/core/utility.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
Mat img;
int threshval = 100;
static void on_trackbar(int, void*)
{
Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
Mat labelImage(img.size(), CV_32S);
int nLabels = connectedComponents(bw, labelImage, 8);
std::vector<Vec3b> colors(nLabels);
colors[0] = Vec3b(0, 0, 0);//background
for (int label = 1; label < nLabels; ++label) {
colors[label] = Vec3b((rand() & 255), (rand() & 255), (rand() & 255));
}
Mat dst(img.size(), CV_8UC3);
for (int r = 0; r < dst.rows; ++r) {
for (int c = 0; c < dst.cols; ++c) {
int label = labelImage.at<int>(r, c);
Vec3b &pixel = dst.at<Vec3b>(r, c);
pixel = colors[label];
}
}
imshow("Connected Components", dst);
}
static void help()
{
cout << "\n This program demonstrates connected components and use of the trackbar\n"
"Usage: \n"
" ./connected_components <image(../data/stuff.jpg as default)>\n"
"The image is converted to grayscale and displayed, another image has a trackbar\n"
"that controls thresholding and thereby the extracted contours which are drawn in color\n";
}
const char* keys =
{
"{help h||}{@image|../data/stuff.jpg|image for converting to a grayscale}"
};
int main(int argc, const char** argv)
{
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
help();
return 0;
}
string inputImage = parser.get<string>(0);
//img = imread(inputImage.c_str(), 0);
img = imread("1.png", 0);
if (img.empty())
{
cout << "Could not read input image file: " << inputImage << endl;
return -1;
}
namedWindow("Image", 1);
imshow("Image", img);
namedWindow("Connected Components", 1);
createTrackbar("Threshold", "Connected Components", &threshval, 255, on_trackbar);
on_trackbar(threshval, 0);
waitKey(0);
return 0;
}
网友评论