美文网首页
Netty模型架构

Netty模型架构

作者: zfylin | 来源:发表于2019-06-20 11:36 被阅读0次

    Netty是 一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。
    Netty作为异步事件驱动的网络,高性能之处主要来自于其I/O模型和线程处理模型,前者决定如何收发数据,后者决定如何处理数据

    I/O 模型

    传统的HTTP服务器的原理

    1. 创建一个ServerSocket,监听并绑定一个端口
    2. 一系列客户端来请求这个端口
    3. 服务器使用Accept,获得一个来自客户端的Socket连接对象
    4. 启动一个新线程处理连接
      • 读Socket,得到字节流
      • 解码协议,得到Http请求对象
      • 处理Http请求,得到一个结果,封装成一个HttpResponse对象
      • 编码协议,将结果序列化字节流写Socket,将字节流发给客户端
    5. 继续循环步骤3

    传统的HTTP服务器的阻塞型I/O(BIO)

    • 当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大
    • 连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在read操作上,造成线程资源浪费
    image.png

    Netty的非阻塞型I/O(NIO)

    NIO不是Java独有的概念,NIO代表是一种IO多路复用模型。它是由操作系统提供的系统调用,早期这个操作系统调用是select,但是性能低下,后来渐渐演化成了Linux下的epoll和Mac里的kqueue。而Netty就是基于Java NIO技术封装的一套框架。

    Netty的对JDK自带的NIO的API进行封装,解决上述问题,主要特点有:

    • 设计优雅适用于各种传输类型的统一API - 阻塞和非阻塞Socket基于灵活且可扩展的事件模型,可以清晰地分离关注点高度可定制的线程模型 - 单线程,一个或多个线程池真正的无连接数据报套接字支持(自3.1起)。
    • 使用方便详细记录的Javadoc,用户指南和示例没有其他依赖项,JDK 5(Netty 3.x)或6(Netty 4.x)就足够了。
    • 高性能吞吐量更高,延迟更低减少资源消耗最小化不必要的内存复制。
    • 安全完整的SSL / TLS和StartTLS支持。
    • 社区活跃,不断更新社区活跃,版本迭代周期短,发现的BUG可以被及时修复,同时,更多的新功能会被加入。
    image.png

    基于buffer

    传统的I/O是面向字节流或字符流的,以流式的方式顺序地从一个Stream 中读取一个或多个字节, 因此也就不能随意改变读取指针的位置。

    在NIO中, 抛弃了传统的 I/O流, 而是引入了Channel和Buffer的概念. 在NIO中, 只能从Channel中读取数据到Buffer中或将数据 Buffer 中写入到 Channel。

    基于buffer操作不像传统IO的顺序操作, NIO 中可以随意地读取任意位置的数据。

    线程模型

    事件驱动模型

    通常,我们设计一个事件处理模型的程序有两种思路

    • 轮询方式线程不断轮询访问相关事件发生源有没有发生事件,有发生事件就调用事件处理逻辑。
    • 事件驱动方式发生事件,主线程把事件放入事件队列,在另外线程不断循环消费事件列表中的事件,调用事件对应的处理逻辑处理事件。事件驱动方式也被称为消息通知方式,其实是设计模式中观察者模式的思路。

    Netty采用的是第二种事件驱动模型。如下图:

    image.png

    主要包括4个基本组件:

    • 事件队列(event queue):接收事件的入口,存储待处理事件
    • 分发器(event mediator):将不同的事件分发到不同的业务逻辑单元
    • 事件通道(event channel):分发器与处理器之间的联系渠道
    • 事件处理器(event processor):实现业务逻辑,处理完成后会发出事件,触发下一步操作

    可以看出,相对传统轮询模式,事件驱动有如下优点:

    • 可扩展性好,分布式的异步架构,事件处理器之间高度解耦,可以方便扩展事件处理逻辑
    • 高性能,基于队列暂存事件,能方便并行异步处理事件

    Reactor线程模型

    Reactor是反应堆的意思,Reactor模型,是指通过一个或多个输入同时传递给服务处理器的服务请求的事件驱动处理模式。 服务端程序处理传入多路请求,并将它们同步分派给请求对应的处理线程,Reactor模式也叫Dispatcher模式,即I/O多了复用统一监听事件,收到事件后分发(Dispatch给某进程),是编写高性能网络服务器的必备技术之一。

    Reactor模型中有2个关键组成:

    • ReactorReactor在一个单独的线程中运行,负责监听和分发事件,分发给适当的处理程序来对IO事件做出反应。 它就像公司的电话接线员,它接听来自客户的电话并将线路转移到适当的联系人
    • Handlers处理程序执行I/O事件要完成的实际事件,类似于客户想要与之交谈的公司中的实际官员。Reactor通过调度适当的处理程序来响应I/O事件,处理程序执行非阻塞操作。
    image.png

    取决于Reactor的数量和Hanndler线程数量的不同,Reactor模型有3个变种

    单Reactor单线程

    一个NIO线程+一个accept线程:

    image

    单Reactor多线程

    image

    主从Reactor多线程

    主从Reactor多线程:多个acceptor的NIO线程池用于接受客户端的连接。

    image

    Netty线程模型可以基于如上三种Reactor线程模型进行灵活的配置。

    模块组件

    Bootstrap、ServerBootstrap

    Bootstrap意思是引导,一个Netty应用通常由一个Bootstrap开始,主要作用是配置整个Netty程序,串联各个组件,Netty中Bootstrap类是客户端程序的启动引导类,ServerBootstrap是服务端启动引导类。

    Future、ChannelFuture

    Netty中所有的IO操作都是异步的,不能立刻得知消息是否被正确处理,但是可以过一会等它执行完成或者直接注册一个监听,具体的实现就是通过Future和ChannelFutures,他们可以注册一个监听,当操作执行成功或失败时监听会自动触发注册的监听事件。

    Channel

    Netty网络通信的组件,能够用于执行网络I/O操作。Channel为用户提供:

    • 当前网络连接的通道的状态(例如是否打开?是否已连接?)
    • 网络连接的配置参数 (例如接收缓冲区大小)
    • 提供异步的网络I/O操作(如建立连接,读写,绑定端口),异步调用意味着任何I / O调用都将立即返回,并且不保证在调用结束时所请求的I / O操作已完成。调用立即返回一个ChannelFuture实例,通过注册监听器到ChannelFuture上,可以I / O操作成功、失败或取消时回调通知调用方。
    • 支持关联I/O操作与对应的处理程序

    不同协议、不同的阻塞类型的连接都有不同的 Channel 类型与之对应,下面是一些常用的 Channel 类型

    • NioSocketChannel,异步的客户端 TCP Socket 连接
    • NioServerSocketChannel,异步的服务器端 TCP Socket 连接
    • NioDatagramChannel,异步的 UDP 连接
    • NioSctpChannel,异步的客户端 Sctp 连接
    • NioSctpServerChannel,异步的 Sctp 服务器端连接这些通道涵盖了 UDP 和 TCP网络 IO以及文件 IO

    Selector

    Netty基于Selector对象实现I/O多路复用,通过 Selector, 一个线程可以监听多个连接的Channel事件, 当向一个Selector中注册Channel 后,Selector 内部的机制就可以自动不断地查询(select) 这些注册的Channel是否有已就绪的I/O事件(例如可读, 可写, 网络连接完成等),这样程序就可以很简单地使用一个线程高效地管理多个 Channel。

    NioEventLoop

    NioEventLoop中维护了一个线程和任务队列,支持异步提交执行任务,线程启动时会调用NioEventLoop的run方法,执行I/O任务和非I/O任务:

    • I/O任务即selectionKey中ready的事件,如accept、connect、read、write等,由processSelectedKeys方法触发。
    • 非IO任务添加到taskQueue中的任务,如register0、bind0等任务,由runAllTasks方法触发。

    两种任务的执行时间比由变量ioRatio控制,默认为50,则表示允许非IO任务执行的时间与IO任务的执行时间相等。

    NioEventLoopGroup

    NioEventLoopGroup,主要管理eventLoop的生命周期,可以理解为一个线程池,内部维护了一组线程,每个线程(NioEventLoop)负责处理多个Channel上的事件,而一个Channel只对应于一个线程。

    ChannelHandler

    ChannelHandler是一个接口,处理I / O事件或拦截I / O操作,并将其转发到其ChannelPipeline(业务处理链)中的下一个处理程序。

    ChannelHandler本身并没有提供很多方法,因为这个接口有许多的方法需要实现,方便使用期间,可以继承它的子类:

    • ChannelInboundHandler用于处理入站I / O事件
    • ChannelOutboundHandler用于处理出站I / O操作

    或者使用以下适配器类:

    • ChannelInboundHandlerAdapter用于处理入站I / O事件
    • ChannelOutboundHandlerAdapter用于处理出站I / O操作
    • ChannelDuplexHandler用于处理入站和出站事件

    ChannelHandlerContext

    保存Channel相关的所有上下文信息,同时关联一个ChannelHandler对象

    ChannelPipline

    保存ChannelHandler的List,用于处理或拦截Channel的入站事件和出站操作。 ChannelPipeline实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以及Channel中各个的ChannelHandler如何相互交互。

    工作原理架构

    ublic static void main(String[] args) {
            // 创建mainReactor
            NioEventLoopGroup boosGroup = new NioEventLoopGroup();
            // 创建工作线程组
            NioEventLoopGroup workerGroup = new NioEventLoopGroup();
    
            final ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap 
                     // 组装NioEventLoopGroup 
                    .group(boosGroup, workerGroup)
                     // 设置channel类型为NIO类型
                    .channel(NioServerSocketChannel.class)
                    // 设置连接配置参数
                    .option(ChannelOption.SO_BACKLOG, 1024)
                    .childOption(ChannelOption.SO_KEEPALIVE, true)
                    .childOption(ChannelOption.TCP_NODELAY, true)
                    // 配置入站、出站事件handler
                    .childHandler(new ChannelInitializer<NioSocketChannel>() {
                        @Override
                        protected void initChannel(NioSocketChannel ch) {
                            // 配置入站、出站事件channel
                            ch.pipeline().addLast(...);
                            ch.pipeline().addLast(...);
                        }
        });
    
            // 绑定端口
            int port = 8080;
            serverBootstrap.bind(port).addListener(future -> {
                if (future.isSuccess()) {
                    System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");
                } else {
                    System.err.println("端口[" + port + "]绑定失败!");
                }
            });
    }
    

    务端Netty的工作架构图:

    image.png

    参考

    彻底理解Netty

    一文理解Netty模型架构

    相关文章

      网友评论

          本文标题:Netty模型架构

          本文链接:https://www.haomeiwen.com/subject/sxsdqctx.html