像认真记录生活一样记录Bug.
1. 从autograd.Variable中取Tensor
- BUG:
RuntimeError: copy from Variable to torch.FloatTensor isn't implemented
这个错误比较简单,就不给完整报错信息了。 - 问题分析:
错误语句:new_output[:,:,i,:,:]=temp2D_output
这里的new_output是Tensor类型,temp2D_output是Variable类型。
所以问题就变成了怎么样从autograd.Variable中取到Tensor - 解决方法:
上图:
这是autograd.Variable的结构图,忘记了可以看看这个
PyTorch入门学习(二):Autogard之自动求梯度
所以直接用Variable.data
属性即可。
2. Pytorch的计算类型不匹配问题
- BUG:
Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument #2 'weight' - 完整报错信息:
Traceback (most recent call last):
File "p3d_model.py", line 425, in <module>
out=model(data)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 325, in __call__
result = self.forward(*input, **kwargs)
File "p3d_model.py", line 299, in forward
x = self.maxpool_2(self.layer1(x)) # Part Res2
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 325, in __call__
result = self.forward(*input, **kwargs)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/modules/container.py", line 67, in forward
input = module(input)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 325, in __call__
result = self.forward(*input, **kwargs)
File "p3d_model.py", line 166, in forward
out=self.ST_A(out)
File "p3d_model.py", line 120, in ST_A
x = self.bn2(x)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 325, in __call__
result = self.forward(*input, **kwargs)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/modules/batchnorm.py", line 37, in forward
self.training, self.momentum, self.eps)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/nn/functional.py", line 1013, in batch_norm
return f(input, weight, bias)
RuntimeError: Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument #2 'weight'
从报错信息来看应该是:需要的输入参数类型为torch.FloatTensor,但实际上给定是torch.cuda.FloatTensor
- 错误历程
可以看到出错的语句为:self.bn2(x)
一开始一直以为是自己传入的x类型不符合要求,
def conv2_fyq(self,x):
deep=x.shape[2]
temp2D_output=self.conv2(x[:,:,0,:,:])
new_output=torch.Tensor(temp2D_output.shape[0],temp2D_output.shape[1],deep,temp2D_output.shape[2],temp2D_output.shape[3])
for i in range(deep):
temp2D_input=x[:,:,i,:,:]
temp2D_output=self.conv2(temp2D_input)
print (temp2D_output.shape) # (10, ,160,160)
new_output[:,:,i,:,:]=temp2D_output.data
print (new_output.shape) # (10, ,16,160,160)
# print (new_output)
result=new_output.type(torch.FloatTensor)
# print (result)
result=Variable(result)
return result
x = self.conv2_fyq(x)
x = self.bn2(x) #error
所以一直在修改函数conv2_fyq()
函数的返回值,希望从torch.cuda.FloatTensor类型转为torch.FloatTensor,试过很多方法,比如:
result=result.cpu()
- 借用
numpy array
类型作为中转 - 使用类型转换
result=new_output.type(torch.FloatTensor)
-
解决方法
首先可以肯定的是由于张量类型不一致导致的;
查了很多资料发现本质是由于两个张量不在同一个空间例如一个在cpu中,而另一个在gpu中因此会引发错误。
print result发现为torch.FloatTensor类型,由此想到出现问题的是nn.BatchNorm3d中其他的参数类型为torch.cuda.FloatTensor.
所以最后的解决方案:将result转为torch.cuda.FloatTensor类型
result=new_output.type(torch.cuda.FloatTensor)
-
参考文献
torch.Tensor类型的构建与相互转换
expected CPU tensor (got CUDA tensor)
PyTorch遇到令人迷人的BUG与记录
这一个小bug的解决也花了近2小时了~
虽然没有直接在参考文献中找到答案,但还是深受启发~
自己解决一个木有现成答案的问题还是挺有意思的哈哈哈哈,心里话是开心都是骗人的,过程最折磨人。
3. 数据集label取值问题
- BUG:
THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1512378360668/work/torch/lib/THC/generated/../generic/THCTensorMathPointwise.cu line=301 error=59 : device-side assert triggered - 完整报错信息:
hl@hl-Precision-Tower-5810:~/Desktop/lovelyqian/CV_Learning/pseudo-3d-conv_S$ python P3D_train_fyq.py
hello
[1,1] loss: 4.593
[1,2] loss: 5.070
[1,3] loss: 4.854
[1,4] loss: 4.764
[1,5] loss: 4.807
[1,6] loss: 4.664
[1,7] loss: 4.797
[1,8] loss: 4.802
[1,9] loss: 4.808
[1,10] loss: 4.564
[1,11] loss: 4.509
[1,12] loss: 5.150
[1,13] loss: 4.323
[1,14] loss: 4.779
[1,15] loss: 5.295
THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1512378360668/work/torch/lib/THC/generated/../generic/THCTensorMathPointwise.cu line=301 error=59 : device-side assert triggered
Traceback (most recent call last):
File "P3D_train_fyq.py", line 43, in <module>
loss.backward()
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/autograd/variable.py", line 167, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/autograd/__init__.py", line 99, in backward
variables, grad_variables, retain_graph)
RuntimeError: cuda runtime error (59) : device-side assert triggered at /opt/conda/conda-bld/pytorch_1512378360668/work/torch/lib/THC/generated/../generic/THCTensorMathPointwise.cu:301
- 问题分析:
这个问题的错误跟源代码也没有多大的关系,可以直接看到是在用pytorch的backward时候出现了报错信息。
算了,还是贴一下源代码吧~~
#dataset
myUCF101=UCF101()
classNames=myUCF101.get_className()
# print (classNames)
#model
model = P3D199(pretrained=False,num_classes=101)
model = model.cuda()
# print (model)
#loss and optimizer
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.001)
#train the network
for epoch in range(2): #loop over the dataset multiple times
running_loss=0
batch_num=myUCF101.set_mode('train')
for batch_index in range(batch_num):
# get the train data
train_x,train_y=myUCF101[batch_index]
# warp them in Variable
# train_x,train_y=Variable(train_x.cuda()),Variable(train_y.type(torch.LongTensor).cuda())
train_x,train_y=Variable(train_x).cuda(),Variable(train_y.type(torch.LongTensor)).cuda()
# set 0
optimizer.zero_grad()
# forward+backwar+optimize
out=model(train_x)
loss=criterion(out,train_y)
loss.backward()
optimizer.step()
# print statistics
running_loss+=loss.data[0]
print ('[%d,%d] loss: %.3f' %(epoch+1,batch_index+1,running_loss))
print >> f, ('[%d,%d] loss: %.3f' %(epoch+1,batch_index+1,running_loss))
running_loss=0.0
从代码来看就很简单的逻辑,就是用常规的思路对网络模型进行数据的输入,梯度清零,计算输出值,计算损失函数,然后反向求梯度并更新。
这个问题没有找到一模一样的情况,但是在下文给出的参考文献中找到了解决思路,即跟label有关。
也发现每一次出现错误信息的时间段不一样,即能成功训练的batch的数目不同,有的时候多,有的时候少。
所以想到把train_y给输出来,多运行几次之后发现每次出错都是在label中出现了101的时候,再回过来考虑这个问题。
本项目用的是UCF101数据集,共有101种类型,所以在读入label的时候自然就根据数据集制作者给出的label进行处理,取值为1-101. 但是PyTorch要求的范围为:0-100
- 解决方法:
101种className, 则正确的数据label范围:0-100 - 参考文献:
pytorch 问题汇总
Pytorch图像分割BUG心得汇总(一)
4.TypeError: only integer scalar arrays can be converted to a scalar index
- BUG:
TypeError: only integer scalar arrays can be converted to a scalar index - 情况说明:
给出相关的源代码
def test(dateset,model,model_state_path):
myUCF101=dateset
model.load_state_dict(torch.load(model_state_path))
classNames=myUCF101.get_className()
# test the network on the test data
batch_num=myUCF101.set_mode('test')
for batch_index in range(batch_num):
batch_correct=0
# get the test dat
test_x,test_y_label=myUCF101[batch_index]
# warp teat_x in Variable
test_x=Variable(test_x.cuda())
# get teh predicted output
out=model(test_x)
_,predicted_y=torch.max(out.data,1)
predicted_label=classNames[predicted_y]
batch_correct+= (predicted_label==test_y_label).sum()
print('bactch: %d accuracy is: %.2f' %(batch_index+1,batch_correct/float(len(test_y_label))))
print >> f, ('bactch: %d accuracy is: %.2f' %(batch_index+1,batch_correct/float(len(test_y_label))))
print ('Test Finished')
主要看这两行:
out=model(test_x)
_,predicted_y=torch.max(out.data,1)
predicted_label=classNames[predicted_y]
out是我取到的分类值; predicted是最有可能的label集合;classNames是具体的label。
- 错误分析:
1. 首先把predicted_y由cuda的longTensor改成numpy格式的。
predicted_y=predicted_y.cpu().numpy()
- 然后还是不行,就把predicted_y打印出来,发现是np.ndarray形式的,猜测可能需要转换为np.array()。
例如:
predicted_y=np.array(predicted_y,dtype=np.uint8)
这样依然没有解决问题,且网上提供的很多解决方案例如predicted_y=predicted_y.flatten()
将多维数组转为展开成一维数组都行不通。
3. 既然提示需要直接使用np.array,所以我就定义了 a=np.arange(8)
,来测试classNames[a],发现还是一样的错误。到这里就觉得已经不是下标的问题了,所以才想到是不是classNames的问题。
然后才想到classNames不是array,而是list。所以我就将classNames做了一个从array到list的类型转换。
classNames=np.array(classNames)
到这里就就决问题了。
- 解决方法 :
# cuda.longTensor to numpy.array
predicted_y=predicted_y.cpu().numpy()
# ndarray to array
predicted_y=np.array(predicted_y,dtype=np.uint8)
# list to array
classNames=np.array(classNames)
总结来说,TypeError: only integer scalar arrays can be converted to a scalar index
这个问题可以从下标和数组这两个对象来看,都需要是np.array类型的。
5.DataLoader处理数据集时候的数据问题
- BUG:
RuntimeError: invalid argument 2: cannot unsqueeze empty tensor at /opt/conda/conda-bld/pytorch_1512378360668/work/torch/lib/TH/generic/THTensor.c:601 - 完整报错信息:
Traceback (most recent call last):
File "UCF101_pytorch_fyq.py", line 182, in <module>
for i_batch,sample_batched in enumerate(dataloader):
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 210, in __next__
return self._process_next_batch(batch)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 230, in _process_next_batch
raise batch.exc_type(batch.exc_msg)
RuntimeError: Traceback (most recent call last):
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 42, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 116, in default_collate
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 116, in <dictcomp>
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 96, in default_collate
return torch.stack(batch, 0, out=out)
File "/home/hl/anaconda2/lib/python2.7/site-packages/torch/functional.py", line 62, in stack
inputs = [t.unsqueeze(dim) for t in sequence]
RuntimeError: invalid argument 2: cannot unsqueeze empty tensor at /opt/conda/conda-bld/pytorch_1512378360668/work/torch/lib/TH/generic/THTensor.c:601
- 错误分析:
这个问题大概可以看出来是DataLoader的问题,但是使用框架的时候具体到哪个函数,哪行代码就会比较麻烦。看报错信息的最后一行应该可以知道是空的Tensor引起的。
我们不用DataLoader的情况下,输出数据样本:
print (len(myUCF101))
for i in range (5):
sample=myUCF101[i]
print(sample['video_x'].size(),sample['video_label'])
得到如下所示:
可以看到与video_label会有关系。
- 解决方法:
超级感谢这篇资料的引导了:# Cannot Unsqueeze Empty Tensor
确实是由于video_label是标量引起的,最后做了改动,具体如下所说:
错误
网友评论