美文网首页
成长系列:相对论

成长系列:相对论

作者: DBOYKAD | 来源:发表于2018-02-16 13:41 被阅读15次

本文由币乎社区(bihu.com)内容支持计划奖励。

名词解释:

RBM人民币;BTC比特币;EOS企业级应用系统代币;P1去中心化内容出版应用代币

1)开头从一个公式说起:

图片来自:https://weibo.com/bylixiaolai?is_search=0&visible=0&is_all=1&is_tag=0&profile_ftype=1&page=3#_rnd1512819463175

2)从8月份开始一直没有搞清楚这个公式的内涵,直到今天下午去做学术报告,讲完后在台下发呆中,突然灵光一现,感觉理解了这个公式,立即抓起铅笔一顿演算,推演写了三页A4纸,嗯,终于找到了可能的解,应该是这样子的,但是不是笑来老师理解的答案?没有关系,至少现在我理解应该是这意思。

3)此处可以先理解一下我之前的文章:成长系列:价值百万的领悟

第一层次:以法币的视角评价收益;

第二层次:以BTC的视角评价收益;

第三层次:以其他货币的视角评价收益;

4)演算过程(可以跳过推导过程):

5)第一层次以法币视角计算(BTC/RMB):

投入人民币本金R0后购买BTC(数量为B0),利息为

(今年BTC人民币价格/去年BTC人民币价格);

投资n年后,收益为Rn:

6)第二层次以BTC视角计算(XXX/BTC):

将数量为B0的BTC投资为其他货币(XXX),投入BTC本金B0后,利息为

(今年该货币对BTC价格/去年该货币对BTC价格);

投资n年后,收益为Bn:

7)第三层次,将上述的XXX/BTC,BTC/RMB联立计算收益率:

由于6)的缘故,5)中投资的BTC的数量率为

于是计算法币的利息其实要计算上这个系数,如果变多了,利息上升,如果变少了,利息下降;

即法币的利息为

根据6)得到

将上述代入5)中,得到最终计算收益公式:

对照笑来的公式:

形式上对应了!

8)这个公式的解读:

p对应是未来的收入(比如说是法币RMB);

x对应是初始投入的本金;

y对应的是第一投资标的物对应增长率(比如说是BTC对应RMB的增长率);

z对应的是第二投资标的物对应第一投资标的物对应的增长率(比如说是EOS对应BTC的增长率);

9)推演1:将RMB换为BTC为初始货币,上述公式依然成立,第一投资标的可以选为EOS,第二投资标的可以选为EOS系统上的P1,即最终通过计算获得BTC的数量为最终评价标准;

10)推演2:以RMB转化为BTC,BTC转化为EOS,EOS再转化为P1,收益以RMB计,三重增长模型:

11)演算举例,以RMB、BTC、EOS三者作为投资例子:

投入本金1元,BTC对RMB的年增长率为0.1(10%增长,这个增长率是严重低估的);

EOS对BTC的年增长率0.05(5%增长,EOS上升的幅度应该可以超越BTC);

演算30年结果:

如果按BTC10%增长,单投BTC,7年翻倍,30年17倍;

如果按BTC10%增长,EOS增长又高于BTC,6年翻倍,30年47369倍;

区块链的世界,时间密度非常高,这个时间周期年可以改为月;

要实现上述的演算,前提是EOS的成长要高于BTC;

12)如果EOS的成长低于BTC会怎么样呢?

投入本金1元,BTC对RMB的年增长率为0.1(10%增长,这个增长率是严重低估的);

EOS对BTC的年增长率-0.05(-5%增长);

演算30年结果:

如果按BTC10%增长,单投BTC,7年翻倍,30年17倍;

如果按BTC10%增长,EOS相对于BTC下跌-5%,17年翻倍,30年反而下跌,只有1.9倍增长;

13)如果再选一个P1呢?形成三重增长模型(实际上只会有两重模型,将法币RMB转为BTC后,就可买其他任何加密货币了,不需要RMB转为BTC,再转为EOS,再转为P1)。

投入本金1元,BTC对RMB的年增长率为0.1(10%增长,这个增长率是严重低估的);

EOS对BTC的年增长率0.05(5%增长);

P1相对于EOS的年增长率为0.01(1%增长);

演算30年结果:

三重收益的结果要突破天际了,30年达到1000万倍的增长;

实现该模型的条件是:有比BTC牛的EOS,然后还有比EOS牛的P1。

14)最终,以上演算其实将简单问题复杂化了,就是看一个代币的综合增长率。。。

15)那么,问题来了,EOS的未来成长相对于BTC都不能长期超越?

16)还有一个问题,笑来老师是这个意思吗?

完成于2017.12.9晚 北京

谢谢您的关注!

相关文章

  • 成长系列:相对论

    本文由币乎社区(bihu.com)内容支持计划奖励。 名词解释: RBM人民币;BTC比特币;EOS企业级应用系统...

  • 成长系列:广义相对论

    本文由币乎社区(bihu.com)内容支持计划奖励。 1)开头从一个公式说起: 图片来自:https://weib...

  • 相对论正传(1):这个系列的故事要怎么讲?

    我从一开始写相对论的文章的时候,就打算要写三个系列:《相对论前传》、《相对论正传》和《相对论后传》,打算把相对论的...

  • 低价,救星还是克星,小米华为都在思考---营销相对论1

    前面写了一系列的推广实战案例文章,接下来会出一系列的点评文章,叫做营销相对论,为什么叫相对论呢,那是因为很多手法在...

  • 菜鸟成长系列-单例模式

    菜鸟成长系列-概述菜鸟成长系列-面向对象的四大基础特性菜鸟成长系列-多态、接口和抽象类菜鸟成长系列-面向对象的6种...

  • 文科生通俗解释相对论系列(二)

    欢迎回来。 在相对论系列文章的第一篇中,我们对相对论的定义有了一些了解,还知道了世界上任何物体的“速度”都是光速,...

  • 1.21相对论

    今天学习相对论和两种思维-成长性思维和系统思维。相对论比较复杂,现在还不能完全理解,知道了,在物理学里面,运动和静...

  • 写给爸爸们的简明《相对论》2/5

    狭义相对论 相对论分为狭义相对论和广义相对论,首先介绍狭义相对论,从哪里开始呢? 上帝说:要有光。于是就有了光。随...

  • 2018-02-01

    重温成长系列

  • 《相对论》

    爱因斯坦狭义相对论 相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论...

网友评论

      本文标题:成长系列:相对论

      本文链接:https://www.haomeiwen.com/subject/tbdktftx.html