TensoRF

作者: Valar_Morghulis | 来源:发表于2022-07-18 19:28 被阅读0次

TensoRF: Tensorial Radiance Fields

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, Hao Su

https://arxiv.org/abs/2203.09517

https://apchenstu.github.io/TensoRF/

ECCV 2022 (poster, final scores: 1, 1, 1)

17 Mar 2022

We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which represents a 3D voxel grid with per-voxel multi-channel features. Our central idea is to factorize the 4D scene tensor into multiple compact low-rank tensor components. We demonstrate that applying traditional CP decomposition -- that factorizes tensors into rank-one components with compact vectors -- in our framework leads to improvements over vanilla NeRF. To further boost performance, we introduce a novel vector-matrix (VM) decomposition that relaxes the low-rank constraints for two modes of a tensor and factorizes tensors into compact vector and matrix factors. Beyond superior rendering quality, our models with CP and VM decompositions lead to a significantly lower memory footprint in comparison to previous and concurrent works that directly optimize per-voxel features. Experimentally, we demonstrate that TensoRF with CP decomposition achieves fast reconstruction (<30 min) with better rendering quality and even a smaller model size (<4 MB) compared to NeRF. Moreover, TensoRF with VM decomposition further boosts rendering quality and outperforms previous state-of-the-art methods, while reducing the reconstruction time (<10 min) and retaining a compact model size (<75 MB).

我们提出了TensoRF,一种新的建模和重建辐射场的方法。与纯粹使用MLP的NeRF不同,我们将场景的辐射场建模为4D张量,表示具有每体素多通道特征的三维体素网格。我们的中心思想是将4D场景张量分解为多个紧凑的低秩张量分量。我们证明了在我们的框架中应用传统的CP分解(将张量分解为具有紧向量的秩一分量)可以改进vanilla NeRF。为了进一步提高性能,我们引入了一种新的向量矩阵分解,该分解放松了张量两种模式的低秩约束,并将张量分解为紧凑的向量和矩阵因子。除了卓越的渲染质量外,与之前和同时进行的直接优化每体素特征的工作相比,我们采用CP和VM分解的模型大大降低了内存占用。实验证明,与NeRF相比,具有CP分解的TensoRF实现了快速重建(<30分钟),具有更好的渲染质量,甚至更小的模型尺寸(<4 MB)。此外,具有VM分解的TensoRF进一步提高了渲染质量,优于以前最先进的方法,同时减少了重建时间(<10分钟),并保持了紧凑的模型大小(<75 MB)。

相关文章

网友评论

      本文标题:TensoRF

      本文链接:https://www.haomeiwen.com/subject/tbudirtx.html