美文网首页
Elasticsearch 查询表达式

Elasticsearch 查询表达式

作者: 夏慕春 | 来源:发表于2021-09-16 16:19 被阅读0次

一 Elasticsearch简介

Elasticsearch 是一个开源的搜索引擎,Elasticsearch 使用 Java 编写的,它的内部使用 Lucene 做索引与搜索,但是它的目的是使全文检索变得简单, 通过隐藏 Lucene 的复杂性,取而代之的提供一套简单一致的 RESTful API。

  • 一个分布式的实时文档存储,每个字段 可以被索引与搜索
  • 一个分布式实时分析搜索引擎
  • 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据

二 安装并运行

已经在其他文档中详细介绍,此次仅做简单步骤介绍

# 安装:
$   wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.13.3-linux-x86_64.tar.gz
$   tar -xzf elasticsearch-7.13.3-linux-x86_64.tar.gz 
$   cd elasticsearch-7.13.3/
# 运行
sh bin/elasticsearch

# 访问
$ curl http://192.168.3.14:9200/ 
{
  "name" : "87DNZWU",
  "cluster_name" : "elasticsearch",
  "cluster_uuid" : "e3A3l85MSZuZlRhxj6IB2w",
  "version" : {
    "number" : "6.7.0",
    "build_flavor" : "default",
    "build_type" : "zip",
    "build_hash" : "8453f77",
    "build_date" : "2019-03-21T15:32:29.844721Z",
    "build_snapshot" : false,
    "lucene_version" : "7.7.0",
    "minimum_wire_compatibility_version" : "5.6.0",
    "minimum_index_compatibility_version" : "5.0.0"
  },
  "tagline" : "You Know, for Search"
}

三 Query DSL 基本结构

查询表达式(Query DSL)是一种非常灵活又富有表现力的查询语言, Elasticsearch 使用它可以以简单的 JSON 接口来展现 Lucene 功能的绝大部分

// 查询
GET /_search  // 查找整个ES中所有索引的内容
{
  "query": {}, //具体的查询语句对象
  "from": 0,   //从第几条数据开始返回
  "size": 100, //返回的条数 默认ES最多返回10000条
  "highlight": { //高亮
    "pre_tags": {}, //高亮内容的前面标签 一般都是html比如<b> <p>这种
    "post_tags": {},//高亮内容的后面标签 一般都是html比如</b> </p>这种
    "fields": { //需要高亮的字段
    }
  },
  "sort": [{ //排序
    "FIELD": { //排序的字段(需要填上具体的字段名)
      "order": "desc"
    }
  }],
  "_source": "{field}" //指定返回的字段
}

// 结果
{
    "took": 350,  // 整个搜索请求消耗了多少毫秒
    "timed_out": false, // 表示本次查询是否超时,如果为true也会返回结果,只是数据可能不完整
    "_shards": { //  显示查询中参与的分片信息,成功多少分片失败多少分片等
        "total": 5, 
        "successful": 5,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": 5, // 匹配到的文档总数
        "max_score": 1, // 为文档中所有_score的最大值
        "hits": [
            {
                "_index": "mysql-shop_trades-order_item_label_binds",
                "_type": "doc",
                "_id": "591935",
                "_score": 1,
                "_source": {
                    "id": 591935,
                    "updated_at": "2021-05-20T06:26:09.000Z",
                    "@version": "1",
                    "bind_item_label_id": 729,
                    "label_type": "brand",
                    "created_at": "2021-05-20T06:26:09.000Z",
                    "@timestamp": "2021-07-07T07:31:36.262Z",
                    "is_deleted": 0,
                    "table_name": "order_item_label_binds",
                    "bar_code": "6907925004486"
                }
            }
        ]
    }
}

四 指定索引搜索

上述查询会搜索ES中的所有索引,但通常只需要去固定一个或几个索引中搜索,搜索全部无疑会造成资源的浪费,在ES中可以通过以下几种方法来指定索引

  1. 指定一个固定的索引,ops-coffee-nginx-2019.05.15为索引名字
GET /mysql-shop_trades-order_statics/_search

以上表示在mysql-shop_trades-order_statics索引下查找数据

  1. 指定多个固定索引,多个索引名字用逗号分割
GET /mysql-shop_trades-order_statics,mysql-shop_trades-order_item_labels/_search

  1. 用*号匹配,在匹配到的所有索引下查找数据
GET /mysql-shop_trades-*/_search

这里也可以用逗号分割多个匹配索引

五 DSL查询

1、筛选字段

// 筛选_source的数据,单个字段
GET /_search
{
  "_source": "bar_code",  
  "query": {}
}

// 筛选_source的数据,多个字段
{
  "_source": {
    "includes": ["store_id", "sku_id"]
  },
  "query": {}
}

// 对字段进行转换
{
  "docvalue_fields": [
    {
      "field": "updated_at",
      "format": "yyyy-MM-dd HH:mm:ss"
    },
    {
      "field": "num",
      "format": "long" // 没有作用,懵逼...
    }
  ], 
  "query": {}
}

2、多条件查询 (where)

  1. constant_score:装另一个查询的查询,固定分数查询,支持filter查询,不支持match查询:

    {
        "constant_score": {
            "filter": {
                "match": {
                    "name": "小米"
                }
            },
            "boost": 10
        }
    }
    
    
  2. bool:主要与其他关键字组合使用,多条件的查询必须要用bool包在外层,然后再根据具体的业务来拼接。


{
  "query": {
    "bool": {
      "should": [{}], //满足其中一个对象查询条件就行 像sql里的or
      "must": [{}],   //必须满足所有对象的查询条件 就像sql里的and
      "must_not": [{}] //必须不满足所有对象的查询条件 就像sql里的and !=
    }
  }
}

  1. must: 类似于SQL中的AND,必须包含
  2. must_not: 类似于SQL中的NOT,必须不包含
  3. should: 满足这些条件中的任何条件都会增加评分_score,不满足也不影响,should只会影响查询结果的_score值,并不会影响结果的内容
  4. filter: 与must相似,但不会对结果进行相关性评分_score,大多数情况下我们对于日志的需求都无相关性的要求,所以建议查询的过程中多用filter

3、group by:

ES本身没有group关键词搜索,但支持聚合查询,,需要使用关键字aggs

// 单个字段 group by
{
  "query":{},//这里省略你的查询条件
  "aggs": {
    "age_group": {//这个是指你要返回字段名
      "terms": { //这里还可以用其它关键词 这里terms才能实现group by效果
        "field": "age",//groupby的字段
        "size":1 //返回的条数 相当于group by limit
      }
    }
  }
}

// 多字段group by (如 group by sku_id,store_id)
// 方法一:script
{
  "query":{},
  "aggs": {
    "age_group": {
      "terms": {
        "script":{
          "source": """ 's' + doc['store_id'] + '_s' + doc['sku_id'] """,
          "lang": "painless"
        },
        "size": 10
      }
    }
  }
}

// 方法二:copy to
1\. 设置mapping中的多个字段,copy_to 为同一个字段(skuId_storeId)
2\. 搜索新字段
{
  "query":{},
  "aggs": {
    "list": {
      "terms": { 
        "field": "skuId_storeId
        "size":1
      }
    }
  }
}

// 方法三:multi_terms (使用高版本,目前6.7不支持)
{
  "aggs": {
    "genres_and_products": {
      "multi_terms": {
        "terms": [{
          "field": "genre" 
        }, {
          "field": "product"
        }]
      }
    }
  }
}

4、order by

order by:注意日期格式和数值格式才支持排序;文本不支持,如果要排序, 需把字段设置为not analysis

// 单排序
{
    "query": {
        "sort": {
            "id": "desc"
        }
    }
}

// avg按照平均值排序
{
    "query": {
        "sort": [
            {
                "id": "desc"
            },
            {
                "price": {
                    "order": "asc",
                    "mode": "avg"
                }
            }
        ]
    }
}

5、count(distinct)

{
  "query":{},
  "aggs": {
    "total_sku_id": {
      "cardinality":{ "field": "sku_id"}
    },
     "total_entity_store_id": { // 非数字类型,无法使用field排序,可以对field增加fieldData = true,或者对field.keyword排序,建议使用后者,高效内存消耗低
      "cardinality":{ "field": "entity_store_id.keyword"}
    }
  }
}

6、SUM

{
  "query":{},
  "aggs": {
    "total_pay_num": {
      "sum": {"field": "num"}
    },
     "total_cost_fee": {
      "sum": {"field": "cost_fee"}
    }
  }
}

7、distinct :

select distinct(id) from table

{
  "query":{},
  "collapse": {
      "field": "id" //你需要distinct的字段
   }, 
}

8、limit

1\. 分页:
    1\. form:从第几个开始查询,最开始是0
    2\. size:即limit
    3\. 使用size,size最大可获取数量是xx个
2\. 获取所有数据的三种方式
    1\. scroll深度滚动需要根据scroll_id和循环取,取完后,需删除scroll,减小内存开销(深度滚动高效,用于处理大量数据,不适合实时获取)
    2.调整索引index.max_result_window的大小,默认10000 (大小与堆内存成正比,这个限制内存)
    3.search_after:请求需增加前一个结果的排序,(实时游标,可根据索引更新和删除而改变 )
    4。 如果是group by查询获取所有数据, 获取需要使用到cardinality查询预估总数,再使用partition、num_partitions分区依次获取数据

9、搜索关键字

  1. match:自定字段,根据字段关键字进行搜索,会分割关键词,匹配到含有一个多多个词的匹配

  2. query_string:全文搜索

  3. match_phrase:不分割关键词 {"match_phrase": {"name":"婴幼儿奶粉"}}

  4. term: 类似SQL where field = x,主要用于数字匹配;如果要匹配文本,会自动分词,不能精准查询,需把字段设置成not analysis

    {
      "query": {
        "term": {"bind_item_label_id": 729}
      }
    }
    
    
  5. terms: 类似SQL where field in (x,x),主要用于数字匹配,

    {
      "query": {
        "terms": {"bind_item_label_id": [703,729]}
      }
    }
    
    
  6. range:: 查询价格在1000-2000的商品

{
    "query": {
        "range": {
            "price": {
                "gte": 1000,
                "lte": 2000
            }
        }
    }
}

  1. filter:判断文档是否满足条件
{
    "query": {
        "bool": {
            "filter": {
                "term": {
                    "price": 1999
                }
            }
        }
    }
}

Elasticsearch:Aggregation

  1. metric:度量聚合,主要针对number类型的数据,需要es做较多的计算工作(类似SQL的SUM、MAX、AVG、MIN、Cardinality、stats<属于多值分析>等)
  2. bucket:桶聚合,划分不同步的桶,将数据分配到不同的桶,(类似SQL中的group by)
  3. Pipeline Aggregation:管道分析类型,对其他聚合结果进行二次聚合
  4. Matrix Aggregation:矩阵分析类型,支持对多个字段的操作并提供一个结果矩阵

term aggregation

  • size 可以通过size返回top size的文档,该术语聚合针对顶层术语(不包含嵌套词根),其搜索过程是将请求向所有分点发送请求,每个分片节点返回size条数据,然后聚合所有分片的结果(会对各分片返回的同样词根的数数值进行相加),最终从中挑选size条记录返回给客户端。从这个过程也可以看出,其结果并不是准确的,而是一个近似值。
  • Shard Size 为了提高该聚合的精确度,可以通过shard_size参数设置协调节点向各个分片请求的词根个数,然后在协调节点进行聚合,最后只返回size个词根给到客户端,shard_size >= size,如果shard_size设置小于size,ES会自动将其设置为size,默认情况下shard_size建议设置为(1.5 * size + 10)。
// 单个字段 group by
{
  "query":{},//这里省略你的查询条件
  "aggs": {
    "age_group": {//这个是指你要返回字段名
      "terms": { //这里还可以用其它关键词 这里terms才能实现group by效果
        "field": "age",//groupby的字段
        "size":1 //返回的条数 相当于group by limit
      }
    }
  }
}

// 返回结果格式
{
  ...
  "aggregations" : {
      "list" : {
        "doc_count_error_upper_bound" : 0, // 该值表示未进入最终术语列表的术语的最大潜在文档计数
        "sum_other_doc_count" : 90 // 该值表示未进入最终术语列表的术语的最大潜在文档计数
        "buckets" : [ // 返回doc_count排名最前的10个,受size参数的影响
          {
            "key" : "1",
            "doc_count" : 24,
            "total_refund_fee" : {
              "value" : 0.0
            },
            "total_cost_fee" : {
              "value" : -14976.0
            },
          }
        ]
      }
    }
    }
}

match_phrase :查询分析文本,创建词组查询

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html#query-dsl-match-query-phrase

举例子

GET mysql-shop_trades-order_item_label_binds/_search/?scroll=1m
{
  "docvalue_fields": [
    {
      "field": "updated_at",
      "format": "yyyy-MM-dd HH:mm:ss"
    }
  ], 
  "size": 1000,
  "sort": {"id":"desc"},
  "query": {
    "bool": {
      "must": [
        {"match": {"is_deleted": 0}},
        {"match": {"label_type": "brand"}},
        {
          "constant_score": {
            "filter": {
              "terms": {
                "bind_item_label_id": [703, 2, 729]
                }
              }
            }
        }
      ]
    }
    }
}

GET mysql-shop_trades-order_item_label_binds/_search/?scroll=1m
{
  "_source": "bar_code", 
  "query": {
    "bool": {
      "filter": [
        {"match": {"is_deleted": 0}},
        {"match_phrase": {"label_type": "brand"}},
        {"terms": {"bind_item_label_id": [703, 2, 729]}}
      ]
    }
  },
  "aggs": {
    "bar_code_group": {
      "terms": {
        "field": "bar_code.keyword",
        "size": 10 
      }
    }
  }
}

GET mysql-shop_trades-order_item_label_binds,mysql-shop_trades-order_statics/_search
{
  "query": {
    "bool": {
      "filter": [
        {"match_phrase": {"sys_name": "yiqigou"}},
        {"range": {"num": {"lte": 2000}}},
        {"range": {"return_num": {"gte": -1000}}},
        {"range": {"total_price": {"lte": 1000000}}},
          {"match": {"id": 60}},
        {"term": {"order_type": 0}},
        {"term": {"item_type": 0}},
        {"range": {"date": {
          "gte": "2020-01-21 00:00:00",
          "lte": "2021-07-22 00:00:00",
          "format": "yyyy-MM-dd HH:mm:ss",
          "time_zone": "+08:00"
        }}}
      ],
      "must_not": [
        {"terms": {"store_id": [165]}}
      ]
    }
  }
}

设置fieldData

// 第一步,创建索引 (如果已经有索引,直接看第二步)
PUT mysql-shop_trades-order_statics2
{
  "mappings": {
    "_doc": {
      "properties": {
        "entity_store_id": { 
          "type": "text",
          "fields": {
            "keyword": { 
              "type": "keyword"
            }
          }
        }
      }
    }
  }
}

// 第二步 设置fieldData为true
PUT mysql-shop_trades-order_statics/_mapping/_doc
{
  "properties": {
    "entity_store_id": {
      "type":     "text",
      "fielddata": true
    }
  }
}

// 第三步 可以查看该索引的Mapping结构,fieldData是否加上去
{
  "mapping": {
    "doc": {
      "properties": {
        "entity_store_id": {
          "type": "text",
          "fields": {
            "keyword": {
              "type": "keyword",
              "ignore_above": 256
            }
          },
          "fielddata": true
        }
      }
    }
  }
}

延伸

设置 max_result_window

PUT /mysql-shop_trades-order_statics/_settings
{
  "index": {
    "max_result_window": 100000
  }
}

测试链接

[ci123dev@ts_web_123 ~]$ curl -H "Content-Type:application/json" _GET -u geekman 'http://192.168.1.123:9227/_search' -d '{ "size" : 1, "query" : { "term" : { "store_id" : {  "value" : 165 } } } }'

Enter host password for user 'geekman':
{"took":5745,"timed_out":false,"_shards":{"total":46,"successful":46,"skipped":0,"failed":0},"hits":{"total":{"value":1213,"relation":"eq"},"max_score":1.0,"hits":[{"_index":"mysql-shop_trades-order_statics","_type":"_doc","_id":"1118612","_score":1.0,"_source":{"@version":"1","order_type":0,"brand_store_id":-1,"num":1,"created_at":"2021-01-11T08:51:16.000Z","refund_order_profit":0,"sys_name":"yiqigou","brand_id":0,"trade_id":6601283,"cashier_account_id":"331c91ee9a574524ba11b0e9db701854","sales_type":"sale","return_cost_fee":0,"guider_account_id":"","bar_code":"6930955714926","sku_id":4369714,"personal_guider_id":0,"order_profit":3.00,"@timestamp":"2021-07-18T07:11:27.171Z","order_id":7895389,"date":"2021-01-10T16:00:00.000Z","trade_from":"cashier","target_order_id":0,"refund_fee":0,"vuid":"223903004","updated_at":"2021-01-11T08:51:16.000Z","dealer_code":"","table_name":"order_statics","item_type":0,"trade_unique_id":"2101111651158000","store_id":165,"entity_store_id":"201611181428483942","total_price":18.00,"cost_fee":15.00,"pay_fee":18.00,"return_num":0,"item_id":5709045,"id":1118612}}]}}

相关文章

网友评论

      本文标题:Elasticsearch 查询表达式

      本文链接:https://www.haomeiwen.com/subject/tcorgltx.html