源自:http://dockone.io/article/2252
https://github.com/deviantony/docker-elk
本文在现有的docker swarm环境上部署
日志收集的流程
Dockerized环境中的典型ELK日志收集流程如下所示:
源自网络
Logstash负责从各种Docker容器和主机中提取日志,这个流程的主要优点是可以更好地用过滤器来解析日志,Logstash将日志转发到Elasticsearch进行索引,Kibana分析和可视化数据。
elasticsearch是一个文档数据库,以mmap的方式管理索引。mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后,进程就可以采用指针的方式,向操作内存一样读写文件。mmap以页为单位实现映射,操作系统对页的的数量有限制,默认的值太小,elasticsearch要求的最小值是262144,小于此值elasticsearch无法启动。分别在三个node上执行以下命令,临时扩大这种限制:
sysctl -w vm.max_map_count=262144
源文的 docker-stack.yml
version: '3.3'
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch-oss:6.4.0
ports:
- "9200:9200"
- "9300:9300"
configs:
- source: elastic_config
target: /usr/share/elasticsearch/config/elasticsearch.yml
environment:
ES_JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
deploy:
mode: replicated
replicas: 1
logstash:
image: docker.elastic.co/logstash/logstash-oss:6.4.0
ports:
- "5000:5000"
- "9600:9600"
configs:
- source: logstash_config
target: /usr/share/logstash/config/logstash.yml
- source: logstash_pipeline
target: /usr/share/logstash/pipeline/logstash.conf
environment:
LS_JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
deploy:
mode: replicated
replicas: 1
kibana:
image: docker.elastic.co/kibana/kibana-oss:6.4.0
ports:
- "5601:5601"
configs:
- source: kibana_config
target: /usr/share/kibana/config/kibana.yml
networks:
- elk
deploy:
mode: replicated
replicas: 1
configs:
elastic_config:
file: ./elasticsearch/config/elasticsearch.yml
logstash_config:
file: ./logstash/config/logstash.yml
logstash_pipeline:
file: ./logstash/pipeline/logstash.conf
kibana_config:
file: ./kibana/config/kibana.yml
networks:
elk:
driver: overlay
从文中获取镜像可能会超时下不到,我自己下载下来,修改tag后上传到私库使用,以上不包括日志收集器,我将使用logpout来收集日志,下面是我修改源文添加的logpout,logpout容器需要限制容器占用的资源,因为在流量高峰期,日志容器会占大量的资源
version: '3.3'
services:
elasticsearch:
image: 172.16.10.192:5000/elasticsearch:6.5.0
ports:
- "9200:9200"
- "9300:9300"
configs:
- source: elastic_config
target: /usr/share/elasticsearch/config/elasticsearch.yml
environment:
ES_JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
deploy:
mode: replicated
replicas: 1
logstash:
image: 172.16.10.192:5000/logstash:6.5.0
ports:
- "5000:5000"
- "9600:9600"
configs:
- source: logstash_config
target: /usr/share/logstash/config/logstash.yml
- source: logstash_pipeline
target: /usr/share/logstash/pipeline/logstash.conf
environment:
LS_JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
deploy:
mode: replicated
replicas: 1
logspout:
image: bekt/logspout-logstash
environment:
ROUTE_URIS: 'logstash+tcp://logstash:5000'
volumes:
- /var/run/docker.sock:/var/run/docker.sock
depends_on:
- logstash
networks:
- elk
deploy:
mode: global
restart_policy:
condition: on-failure
delay: 30s
kibana:
image: 172.16.10.192:5000/kibana:6.5.0
ports:
- "5601:5601"
configs:
- source: kibana_config
target: /usr/share/kibana/config/kibana.yml
networks:
- elk
deploy:
mode: replicated
replicas: 1
configs:
elastic_config:
file: ./elasticsearch/config/elasticsearch.yml
logstash_config:
file: ./logstash/config/logstash.yml
logstash_pipeline:
file: ./logstash/pipeline/logstash.conf
kibana_config:
file: ./kibana/config/kibana.yml
networks:
elk:
driver: overlay
我上传到私库的镜像:
REPOSITORY TAG IMAGE ID CREATED SIZE
172.16.10.192:5000/logstash 6.5.0 7d4604365acd 11 days ago 702MB
172.16.10.192:5000/kibana 6.5.0 fcc1f039f61c 11 days ago 727MB
172.16.10.192:5000/elasticsearch 6.5.0 ff171d17e77c 11 days ago 774MB
docker.elastic.co/elasticsearch/elasticsearch 6.5.0 ff171d17e77c 11 days ago 774MB
并修改了 logstash/pipeline/logstash.conf
input {
tcp {
port => 5000
}
}
## Add your filters / logstash plugins configuration here
filter {
if [docker][image] =~ /logstash/ {
drop {}
}
}
output {
elasticsearch {
hosts => "elasticsearch:9200"
index => "logstash-%{host}"
}
}
input:表示logstash监听在udp的5000端口收集数据。
fileter:过滤器,表示过滤掉image为logstash的容器实例上报上来的数据。
output:表示如何上报过滤后的数据,这里是通过9200端口上报到elasticsearch数据库。
部署到docker swarm中
因为是私库需要加上 --with-registry-auth
docker stack deploy -c docker-stack.yml --with-registry-auth elk
[root@swarm-m docker-elk]# docker stack services elk
ID NAME MODE REPLICAS IMAGE PORTS
b2vqn2d78jw9 elk_kibana replicated 1/1 172.16.10.192:5000/kibana:6.5.0 *:5601->5601/tcp
bb0ko12i5267 elk_logstash replicated 1/1 172.16.10.192:5000/logstash:6.5.0 *:5000->5000/tcp, *:9600->9600/tcp
bw68dn5fe9zp elk_logspout global 3/3 bekt/logspout-logstash:latest
pv0lfryjmgxo elk_elasticsearch replicated 1/1 172.16.10.192:5000/elasticsearch:6.5.0 *:9200->9200/tcp, *:9300->9300/tcp
部署完成后可以在访问 http://172.16.10.85:5601
WX20181121-135325@2x.pngindex pattern 输入 logstash-*
点下一步
点击 create index pattern 之后查看菜单Discover
WX20181121-135803@2x.png我fork后修改了源码:https://github.com/liangxiaobo/docker-elk
引用
docker swarm集群日志管理ELK实战
Logstash 基础入门
https://github.com/looplab/logspout-logstash
网友评论