试探算法

作者: 简子逍 | 来源:发表于2019-07-30 23:42 被阅读4次

    试探算法思想

    试探算法也叫回溯法,它选择先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是正确的解时,就选择下一个候选解。如果当前候选解除不满足规模要求外,能够满足所有其他要求,则继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求,该候选解就是问题的一个解。在试探算法中,放弃当前候选解,并继续寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,并继续试探的过程称为向前试探

    基本步骤
    1. 针对所给问题,定义问题的解空间
    2. 确定易于搜索的解空间结构
    3. 深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

    “八皇后”问题

    问题描述:在 8x8 的国际象棋上摆放 8 个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一条斜线上,问有多少种摆法。

    考虑到 8 个皇后不同行,每一行的皇后可以放置于第 0~7 列,可以认为每一行的皇后有 8 种状态。那么,我们只要套用子集树模板,从第 0 行开始,自上而下,对每一行的皇后,遍历它的 8 个状态即可。

    n = 8
    x = []  # 遍历过程中的一组解
    X = []  # 用来保存所有解
    
    def conflict(k):
        global x
    
        for i in range(k):
            if x[i] == x[k] or abs(x[i] - x[k]) == abs(i - k):  # 判断不在同一列,且不在同一条斜线上
                return True
        return False
    
    def queens(k):  # 摆放第 k 行
        global n, x, X
    
        if k >= n:
            X.append(x[:])  # 得到一组解
        else:
            for i in range(n):
                x.append(i)  # 向前试探
                if not conflict(k):  # 剪枝
                    queens(k + 1)
                x.pop()  # 回溯
    
    def show(x):
        global n
    
        for i in range(n):
            print('. '*(x[i]) + 'X ' + '. ' * (n - x[i] - 1))
    
    queens(0)
    print(len(X))  # 输出解的数量
    print(X[-1], '\n')  # 输出最后一条解
    show(X[-1])
    
    # 输出结果
    92
    [7, 3, 0, 2, 5, 1, 6, 4] 
    
    . . . . . . . X 
    . . . X . . . . 
    X . . . . . . . 
    . . X . . . . . 
    . . . . . X . . 
    . X . . . . . . 
    . . . . . . X . 
    . . . . X . . . 
    

    “迷宫问题”

    问题描述:给定一个迷宫,入口已知。迷宫内 0 表示可走,1 表示墙。有 8 个方向可以进行移动,即上、下、左、右、上左、上右、下左、下右。要求给出到出口的路径,出口表示为迷宫边界为 0 的格子。

    maze = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            [0, 0, 1, 0, 1, 1, 1, 1, 0, 1],
            [1, 1, 0, 1, 0, 1, 1, 0, 1, 1],
            [1, 0, 1, 1, 1, 0, 0, 1, 1, 1],
            [1, 1, 1, 0, 0, 1, 1, 0, 1, 1],
            [1, 1, 0, 1, 1, 1, 1, 1, 0, 1],
            [1, 0, 1, 0, 0, 1, 1, 1, 1, 0],
            [1, 1, 1, 1, 1, 0, 1, 1, 1, 1]]
    
    m, n = 8, 10  # 8行10列
    entry = (1, 0)  # 迷宫入口
    path = [entry]  # 一组解
    paths = []  # 保存所有解
    
    # 可以移动的方向
    directions = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]
    
    def conflict(nx, ny):
        global m, n, maze
    
        if 0<= nx < m and 0 <= ny < n and maze[nx][ny] == 0:
            return False
    
        return True
    
    def walk(x, y):
        global entry, m, n, maze, path, paths, directions
    
        if (x, y) != entry and (x % (m - 1) == 0 or y % (n - 1) == 0):  # 找到出口
            paths.append(path[:])  # 得到一组解
        else:
            for d in directions:
                nx, ny = x + d[0], y + d[1]
                path.append((nx, ny))  # 向前试探
                if not conflict(nx, ny):  # 剪枝
                    maze[nx][ny] = 2
                    walk(nx, ny)
                    maze[nx][ny] = 0
                path.pop()  # 回溯
    
    def show(path):
        global maze
    
        import pprint, copy
    
        maze2 = copy.deepcopy(maze)
    
        for p in path:
            maze2[p[0]][p[1]] = 2
    
        pprint.pprint(maze)
        print()
        pprint.pprint(maze2)
    
    walk(*entry)
    print(paths[-1], '\n')
    show(paths[-1])
    
    # 输出结果
    [(1, 0), (1, 1), (2, 2), (1, 3), (2, 4), (3, 5), (4, 4), (4, 3), (5, 2), (6, 3), (6, 4), (7, 5)] 
    
    [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
     [0, 0, 1, 0, 1, 1, 1, 1, 0, 1],
     [1, 1, 0, 1, 0, 1, 1, 0, 1, 1],
     [1, 0, 1, 1, 1, 0, 0, 1, 1, 1],
     [1, 1, 1, 0, 0, 1, 1, 0, 1, 1],
     [1, 1, 0, 1, 1, 1, 1, 1, 0, 1],
     [1, 0, 1, 0, 0, 1, 1, 1, 1, 0],
     [1, 1, 1, 1, 1, 0, 1, 1, 1, 1]]
    
    [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
     [2, 2, 1, 2, 1, 1, 1, 1, 0, 1],
     [1, 1, 2, 1, 2, 1, 1, 0, 1, 1],
     [1, 0, 1, 1, 1, 2, 0, 1, 1, 1],
     [1, 1, 1, 2, 2, 1, 1, 0, 1, 1],
     [1, 1, 2, 1, 1, 1, 1, 1, 0, 1],
     [1, 0, 1, 2, 2, 1, 1, 1, 1, 0],
     [1, 1, 1, 1, 1, 2, 1, 1, 1, 1]]
    

    相关文章

      网友评论

        本文标题:试探算法

        本文链接:https://www.haomeiwen.com/subject/tgborctx.html