计算机视觉4

作者: supportingvecto | 来源:发表于2017-05-06 15:20 被阅读0次

    计算机视觉漫谈(4)

    学号:14020199025

    姓名:徐铭晟

    【嵌牛导读】:上次我们粗略地谈了谈线性回归算法,今天这篇文章算上次文章的衍生。

    【嵌牛鼻子】:监督学习 线性回归 图像分类

    【嵌牛正文】:

    前篇文章,围绕的线性回归主要是关于一次方程的,这词详细讲讲多维的。

    在机器学习中,这块统称为linear regression,这里截取PRML中的一幅图详细说明一下。

    假设我们的样本点是sin函数+高斯噪声产生的,我们希望能通过这几个样本点,拟合这个函数,从而得到较为准确的预测,我们可以利用之前谈到的函数拟合方法

    这是我们上次讲的一阶函数拟合。当然我们可以仿照之前的方法,开展二阶,三阶甚至n阶函数拟合。

    利用三阶的结果图如下:

    可以看到三阶函数拟合叫好地拟合了我们的目标曲线。下面我们看一下高阶函数拟合情况:

    可以看到虽然高阶使得样本点完美地嵌入我们的曲线中,但是这条曲线并不是我们需要的。解决措施就是在后面加上正则项,有兴趣的可以参考http://blog.csdn.net/liyuan123zhouhui/article/details/51882926。在这里略微提一句,不同地正则项带来的效果不同,比如一阶会带来sparse效果。

    之前的n阶拟合,这个n阶方程也常常被称为basia function。利用基函数拟合任意函数这块哦的学科得涉及到泛函。在实际中,这个基函数也有别的选择,详见下表:

    相关文章

      网友评论

        本文标题:计算机视觉4

        本文链接:https://www.haomeiwen.com/subject/tioetxtx.html