美文网首页
TS 笔记九 泛型

TS 笔记九 泛型

作者: 合肥黑 | 来源:发表于2022-03-05 07:28 被阅读0次

    参考
    C# 泛型 泛型与非泛型集合
    一文读懂 TypeScript 泛型及应用

    一、为什么使用泛型编程?

    参考C#泛型编程

    我们在编写程序时,经常遇到两个模块的功能非常相似,只是一个是处理int数据,另一个是处理string数据,或者其他自定义的数据类型,但我们没有办法,只能分别写多个方法处理每个数据类型,因为方法的参数类型不同。有没有一种办法,在方法中传入通用的数据类型,这样不就可以合并代码了吗?泛型的出现就是专门解决这个问题的。

    我们现在要求实现一个栈,这个栈只能处理int数据类型:

    public class Stack
    {
        private int[] m_item;
        public int Pop()
        {
        }
    
        public void Push(int item)
        {
        }
    
        public Stack(int i)
        {
            this.m_item = new int[i];
        }
    }
    

    上面代码运行的很好,但是,当我们需要一个栈来保存string类型时,该怎么办呢?很多人都会想到把上面的代码复制一份,把int改成string不就行了。当然,这样做本身是没有任何问题的,但一个优秀的程序是不会这样做的,因为他想到若以后再需要long、Node类型的栈该怎样做呢?还要再复制吗?优秀的程序员会想到用一个通用的数据类型object来实现这个栈。但全面地讲,也不是没有缺陷的,主要表现在:

    • 当Stack处理值类型时,会出现装箱、折箱操作,这将在托管堆上分配和回收大量的变量,若数据量大,则性能损失非常严重。
    • 在处理引用类型时,虽然没有装箱和折箱操作,但将用到数据类型的强制转换操作,增加处理器的负担。

    下面是用泛型来重写上面的栈,用一个通用的数据类型T来作为一个占位符,等待在实例化时用一个实际的类型来代替。让我们来看看泛型的威力:

    public class Stack<T>
    {
        private T[] m_item;
        public T Pop()
        {
        }
    
        public void Push(T item)
        {
        }
    
        public Stack(int i)
        {
            this.m_item = new T[i];
        }
    }
    

    使用方式

            Stack<int> a = new Stack<int>(100);
            a.Push(10);
            int x = a.Pop();
    
            Stack<string> b = new Stack<string>(100);
            //这一行编译不通过,因为b只接收string类型的数据
            b.Push(10);
            b.Push("888");
            string y = b.Pop();
    

    这个类和object实现的类有截然不同的区别:

    • 他是类型安全的。实例化了int类型的栈,就不能处理string类型的数据,其他数据类型也一样。
    • 无需装箱和折箱。这个类在实例化时,按照所传入的数据类型生成本地代码,本地代码数据类型已确定,所以无需装箱和折箱。
    • 无需类型转换。
    二、TS泛型例子

    下面来创建第一个使用泛型的例子:identity函数。 这个函数会返回任何传入它的值。 你可以把这个函数当成是echo命令。

    不用泛型的话,这个函数可能是下面这样:

    function identity(arg: number): number {
        return arg;
    }
    

    或者,我们使用any类型来定义函数:

    function identity(arg: any): any {
        return arg;
    }
    

    使用any类型会导致这个函数可以接收任何类型的arg参数,这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。 如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。

    因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。 这里,我们使用了类型变量,它是一种特殊的变量,只用于表示类型而不是值。

    function identity<T>(arg: T): T {
        return arg;
    }
    

    我们给identity添加了类型变量TT帮助我们捕获用户传入的类型(比如:number),之后我们就可以使用这个类型。 之后我们再次使用了T当做返回值类型。现在我们可以知道参数类型与返回值类型是相同的了。 这允许我们跟踪函数里使用的类型的信息。

    我们把这个版本的identity函数叫做泛型,因为它可以适用于多个类型。 不同于使用any,它不会丢失信息,像第一个例子那像保持准确性,传入数值类型并返回数值类型。

    我们定义了泛型函数后,可以用两种方法使用。 第一种是,传入所有的参数,包含类型参数:

    let output = identity<string>("myString");  // type of output will be 'string'
    

    这里我们明确的指定了Tstring类型,并做为一个参数传给函数,使用了<>括起来而不是()

    第二种方法更普遍。利用了类型推论 -- 即编译器会根据传入的参数自动地帮助我们确定T的类型:

    let output = identity("myString");  // type of output will be 'string'
    

    注意我们没必要使用尖括号(<>)来明确地传入类型;编译器可以查看myString的值,然后把T设置为它的类型。 类型推论帮助我们保持代码精简和高可读性。如果编译器不能够自动地推断出类型的话,只能像上面那样明确的传入T的类型,在一些复杂的情况下,这是可能出现的。

    三、使用泛型变量

    使用泛型创建像identity这样的泛型函数时,编译器要求你在函数体必须正确的使用这个通用的类型。 换句话说,你必须把这些参数当做是任意或所有类型。

    看下之前identity例子:

    function identity<T>(arg: T): T {
        return arg;
    }
    

    如果我们想同时打印出arg的长度。 我们很可能会这样做:

    function loggingIdentity<T>(arg: T): T {
        console.log(arg.length);  // Error: T doesn't have .length
        return arg;
    }
    

    如果这么做,编译器会报错说我们使用了arg.length属性,但是没有地方指明arg具有这个属性。 记住,这些类型变量代表的是任意类型,所以使用这个函数的人可能传入的是个数字,而数字是没有.length属性的。

    现在假设我们想操作T类型的数组而不直接是T。由于我们操作的是数组,所以.length属性是应该存在的。 我们可以像创建其它数组一样创建这个数组:

    function loggingIdentity<T>(arg: T[]): T[] {
        console.log(arg.length);  // Array has a .length, so no more error
        return arg;
    }
    

    你可以这样理解loggingIdentity的类型:泛型函数loggingIdentity,接收类型参数T和参数arg,它是个元素类型是T的数组,并返回元素类型是T的数组。 如果我们传入数字数组,将返回一个数字数组,因为此时T的的类型为number。 这可以让我们把泛型变量T当做类型的一部分使用,而不是整个类型,增加了灵活性。

    我们也可以这样实现上面的例子:

    function loggingIdentity<T>(arg: Array<T>): Array<T> {
        console.log(arg.length);  // Array has a .length, so no more error
        return arg;
    }
    

    使用过其它语言的话,你可能对这种语法已经很熟悉了。 在下一节,会介绍如何创建自定义泛型像Array<T>一样。

    四、泛型类型

    上一节,我们创建了identity通用函数,可以适用于不同的类型。 在这节,我们研究一下函数本身的类型,以及如何创建泛型接口。

    泛型函数的类型与非泛型函数的类型没什么不同,只是有一个类型参数在最前面,像函数声明一样:

    function identity<T>(arg: T): T {
        return arg;
    }
    
    let myIdentity: <T>(arg: T) => T = identity;
    

    我们也可以使用不同的泛型参数名,只要在数量上和使用方式上能对应上就可以。

    function identity<T>(arg: T): T {
        return arg;
    }
    
    let myIdentity: <U>(arg: U) => U = identity;
    

    我们还可以使用带有调用签名的对象字面量来定义泛型函数:

    function identity<T>(arg: T): T {
        return arg;
    }
    
    let myIdentity: {<T>(arg: T): T} = identity;
    

    这引导我们去写第一个泛型接口了。 我们把上面例子里的对象字面量拿出来做为一个接口:

    interface GenericIdentityFn {
        <T>(arg: T): T;
    }
    
    function identity<T>(arg: T): T {
        return arg;
    }
    
    let myIdentity: GenericIdentityFn = identity;
    

    一个相似的例子,我们可能想把泛型参数当作整个接口的一个参数。 这样我们就能清楚的知道使用的具体是哪个泛型类型(比如:Dictionary<string>而不只是Dictionary)。 这样接口里的其它成员也能知道这个参数的类型了。

    interface GenericIdentityFn<T> {
        (arg: T): T;
    }
    
    function identity<T>(arg: T): T {
        return arg;
    }
    
    let myIdentity: GenericIdentityFn<number> = identity;
    

    注意,我们的示例做了少许改动。 不再描述泛型函数,而是把非泛型函数签名作为泛型类型一部分。 当我们使用GenericIdentityFn的时候,还得传入一个类型参数来指定泛型类型(这里是:number),锁定了之后代码里使用的类型。 对于描述哪部分类型属于泛型部分来说,理解何时把参数放在调用签名里和何时放在接口上是很有帮助的。

    除了泛型接口,我们还可以创建泛型类。 注意,无法创建泛型枚举和泛型命名空间。

    五、泛型类

    泛型类看上去与泛型接口差不多。 泛型类使用(<>)括起泛型类型,跟在类名后面。

    class GenericNumber<T> {
        zeroValue: T;
        add: (x: T, y: T) => T;
    }
    
    let myGenericNumber = new GenericNumber<number>();
    myGenericNumber.zeroValue = 0;
    myGenericNumber.add = function(x, y) { return x + y; };
    

    GenericNumber类的使用是十分直观的,并且你可能已经注意到了,没有什么去限制它只能使用number类型。 也可以使用字符串或其它更复杂的类型。

    let stringNumeric = new GenericNumber<string>();
    stringNumeric.zeroValue = "";
    stringNumeric.add = function(x, y) { return x + y; };
    
    console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));
    

    与接口一样,直接把泛型类型放在类后面,可以帮助我们确认类的所有属性都在使用相同的类型。

    我们在类那节说过,类有两部分:静态部分和实例部分。 泛型类指的是实例部分的类型,所以类的静态属性不能使用这个泛型类型。

    六、泛型约束

    你应该会记得之前的一个例子,我们有时候想操作某类型的一组值,并且我们知道这组值具有什么样的属性。 在loggingIdentity例子中,我们想访问arglength属性,但是编译器并不能证明每种类型都有length属性,所以就报错了。

    function loggingIdentity<T>(arg: T): T {
        console.log(arg.length);  // Error: T doesn't have .length
        return arg;
    }
    

    相比于操作any所有类型,我们想要限制函数去处理任意带有.length属性的所有类型。 只要传入的类型有这个属性,我们就允许,就是说至少包含这一属性。 为此,我们需要列出对于T的约束要求。

    为此,我们定义一个接口来描述约束条件。 创建一个包含.length属性的接口,使用这个接口和extends关键字来实现约束:

    interface Lengthwise {
        length: number;
    }
    
    function loggingIdentity<T extends Lengthwise>(arg: T): T {
        console.log(arg.length);  
        // Now we know it has a .length property, so no more error
        return arg;
    }
    

    现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:

    loggingIdentity(3);  // Error, number doesn't have a .length property
    

    我们需要传入符合约束类型的值,必须包含必须的属性:

    loggingIdentity({length: 10, value: 3});
    
    七、在泛型约束中使用类型参数

    你可以声明一个类型参数,且它被另一个类型参数所约束。 比如,现在我们想要用属性名从对象里获取这个属性。 并且我们想要确保这个属性存在于对象obj上,因此我们需要在这两个类型之间使用约束。

    function getProperty<T, K extends keyof T>(obj: T, key: K) {
        return obj[key];
    }
    
    let x = { a: 1, b: 2, c: 3, d: 4 };
    
    getProperty(x, "a"); // okay
    getProperty(x, "m"); 
    // error: Argument of type 'm' isn't assignable to 'a' | 'b' | 'c' | 'd'.
    
    八、在泛型里使用类类型

    在TypeScript使用泛型创建工厂函数时,需要引用构造函数的类类型。比如,

    function create<T>(c: {new(): T; }): T {
        return new c();
    }
    

    一个更高级的例子,使用原型属性推断并约束构造函数与类实例的关系。

    class BeeKeeper {
        hasMask: boolean;
    }
    
    class ZooKeeper {
        nametag: string;
    }
    
    class Animal {
        numLegs: number;
    }
    
    class Bee extends Animal {
        keeper: BeeKeeper;
    }
    
    class Lion extends Animal {
        keeper: ZooKeeper;
    }
    
    function createInstance<A extends Animal>(c: new () => A): A {
        return new c();
    }
    
    createInstance(Lion).keeper.nametag;  // typechecks!
    createInstance(Bee).keeper.hasMask;   // typechecks!
    

    相关文章

      网友评论

          本文标题:TS 笔记九 泛型

          本文链接:https://www.haomeiwen.com/subject/tivqrrtx.html