美文网首页python学习
抖音上好看的小姐姐,Python给你都下载了

抖音上好看的小姐姐,Python给你都下载了

作者: AirPython | 来源:发表于2019-06-04 22:57 被阅读256次
    image

    阅读文本大概需要 15 分钟。

    目 标 场 景

    相信大家平时刷抖音短视频的时候,看到颜值高的小姐姐,都有随手点赞关注的习惯。

    如果一条条去刷确实很耗时间,如果 Python 能帮忙筛选出颜值高的小姐姐那就省了很多事。

    本篇文章是借助「百度人脸识别」API,帮我们识别出抖音上颜值高的小姐姐,然后下载到手机相册中。

    准 备 工 作

    首先,项目需要对页面元素进行一些精准的操作,需要提前准备一部 Android 设备,激活开发者选项,并在开发者选项中打开 「USB 调试和指针位置」两处设置。

    为了确保 adb 命令能正常使用,需要提前配置好 adb 开发环境。

    页面元素中的部分元素没法利用 name 等常用属性获取到,可能需要获取到完整的「UI 树」,再利用 Airtest 判断是否存在某个 UI 元素。

    # 安装依赖
    pip3 install pocoui
    

    另外,项目中会对视频进行人脸识别,获取到出现的所有人脸,再进行性别识别及颜值判断。

    这里需要进行百度云后台,注册一个人脸识别的应用,获取到一组 「API Key 和 Secret Key」值。https://console.bce.baidu.com

    image

    然后利用官网提供的 API 文档即可获取到「access token」,由于 ak 的有效期为一个月,所以只需要初始化一次,后面就可以利用人脸识别接口进行正常的识别了。

    appid = '你注册应用的appid'
    api_key = '你注册应用的ak'
    secret_key = '你注册应用的sk'
    
    def get_access_token():
        """
         其关access_token有效期一般有一个月
        """
        # 此变量赋值成自己API Key的值
        client_id = api_key  
    
        # 此变量赋值成自己Secret Key的值
        client_secret = secret_key  
    
        auth_url = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret
    
        header_dict = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko',
                       "Content-Type": "application/json"}
    
        # 请求获取到token的接口
        response_at = requests.get(auth_url, headers=header_dict)
        json_result = json.loads(response_at.text)
        access_token = json_result['access_token']
        return access_token
    

    编 写 脚 本

    在上面已经配置好了 adb 环境的情况下,可以直接借助 python 中的 os 模块执行 adb 命令打开抖音 App。

    # 抖音App的应用包名和初始Activity
    package_name = 'com.ss.android.ugc.aweme'
    activity_name = 'com.ss.android.ugc.aweme.splash.SplashActivity'
    
    def start_my_app(package_name, activity_name):
        """
        打开应用
        adb shell am start -n com.tencent.mm/.ui.LauncherUI
        :param package_name:
        :return:
        """
        os.popen('adb shell am start -n %s/%s' % (package_name, activity_name))
    

    接着,我们需要截取当前播放视频的截图到本地。

    需要注意的是,抖音视频播放界面包含视频创作者头像、BGM 创作者头像等一些杂乱的元素,可能对人脸识别的结果产生一些误差,所以需要对屏幕截图之后的图像进行「二次裁剪」处理。

    def get_screen_shot_part_img(image_name):
        """
        获取手机截图的部分内容
        :return:
        """
        # 截图
        os.system("adb shell /system/bin/screencap -p /sdcard/screenshot.jpg")
        os.system("adb pull /sdcard/screenshot.jpg %s" % image_name)
    
        # 打开图片
        img = Image.open(image_name).convert('RGB')
    
        # 图片的原宽、高(1080*2160)
        w, h = img.size
    
        # 截取部分,去掉其头像、其他内容杂乱元素
        img = img.crop((0, 0, 900, 1500))
    
        img.thumbnail((int(w / 1.5), int(h / 1.5)))
    
        # 保存到本地
        img.save(image_name)
    
        return image_name
    

    现在可以使用百度提供的 API 获取到上面截图的人脸列表。

    def parse_face_pic(pic_url, pic_type, access_token):
        """
        人脸识别
        5秒之内
        :param pic_url:
        :param pic_type:
        :param access_token:
        :return:
        """
        url_fi = 'https://aip.baidubce.com/rest/2.0/face/v3/detect?access_token=' + access_token
    
        # 调用identify_faces,获取人脸列表
        json_faces = identify_faces(pic_url, pic_type, url_fi)
    
        if not json_faces:
            print('未识别到人脸')
            return None
        else:
            # 返回所有的人脸
            return json_faces
    

    从上述的人脸列表中筛选出性别为女,年龄为 18-30 岁之间,颜值超过 70 的小姐姐。

    def analysis_face(face_list):
        """
        分析人脸,判断颜值是否达标
        18-30之间,女,颜值大于80
        :param face_list:识别的脸的列表
        :return:
        """
        # 是否能找到高颜值的美女
        find_belle = False
        if face_list:
            print('一共识别到%d张人脸,下面开始识别是否有美女~' % len(face_list))
            for face in face_list:
                # 判断是男、女
                if face['gender']['type'] == 'female':
                    age = face['age']
                    beauty = face['beauty']
    
                    if 18 <= age <= 30 and beauty >= 70:
                        print('颜值为:%d,及格,满足条件!' % beauty)
                        find_belle = True
                        break
                    else:
                        print('颜值为:%d,不及格,继续~' % beauty)
                        continue
                else:
                    print('性别为男,继续~')
                    continue
        else:
            print('图片中没有发现人脸.')
    
        return find_belle
    

    由于视频是连续播放的,很难通过截取视频某一帧,判断视频有出现颜值高的小姐姐。

    另外,大部分短视频播放时长为「10s+」,这里需要对每一个视频多次截图去做人脸识别,直到识别到颜值高的小姐姐。

    # 一条视频最长的识别时间
    RECOGNITE_TOTAL_TIME = 10 
    # 识别次数
    recognite_count = 1
    
    # 对当前视频截图去人脸识别
    while True:
      # 获取截图
      print('开始第%d次截图' % recognite_count)
    
      # 截取屏幕有用的区域,过滤视频作者的头像、BGM作者的头像
      screen_name = get_screen_shot_part_img('images/temp%d.jpg' % recognite_count)
    
      # 人脸识别
      recognite_result = analysis_face(parse_face_pic(screen_name, TYPE_IMAGE_LOCAL, access_token))
    
      recognite_count += 1
    
      # 第n次识别结束后的时间
      recognite_time_end = datetime.now()
    
      # 这一条视频出现了颜值高的小姐姐
      if recognite_result:
             pass
      else:
             print('超时!!!这是一条没有吸引力的视频!')
             # 跳出里层循环
             break
    

    一旦当前播放的视频识别出有颜值高的小姐姐,就需要模拟保存视频到本地的操作。

    image

    获取「分享」和「保存本地」两个按钮的坐标位置,依次利用 adb 执行点击操作即可下载视频到本地。

    def save_video_met():
        """
        :return:
        """
        # 分享
        os.system("adb shell input tap 1000 1500")
        time.sleep(0.05)
    
        # 保存到本地
        os.system("adb shell input tap 350 1700")
    

    另外,由于下载视频的过程是一个耗时操作,在下载进度对话框还未消失之前,需要做一个「模拟等待」的操作。

    def wait_for_download_finished(poco):
        """
        从点击下载,到下载完全
        :return:
        """
    
        element = Element()
        while True:
            # 由于是对话框,不能利用Element类来判断是否存在某个元素来准确处理
            # element_result = element.findElementByName('正在保存到本地')
    
            # 当前页面UI树元素信息
            # 注意:保存的时候可能会获取元素异常,这里需要抛出,并终止循环
            # com.netease.open.libpoco.sdk.exceptions.NodeHasBeenRemovedException: Node was no longer alive when query attribute "visible". Please re-select.
            try:
                ui_tree_content = json.dumps(poco.agent.hierarchy.dump(), indent=4).encode('utf-8').decode('unicode_escape')
            except Exception as e:
                print(e)
                print('异常,按下载处理~')
                break
    
            if '正在保存到本地' in ui_tree_content:
                print('还在下载中~')
                time.sleep(0.5)
                continue
            else:
                print('下载完成~')
                break
    

    在视频保存到本地之后,就可以模拟向上滑动的操作,跳到播放「下一条视频」。

    循环上面的操作,即可筛选出所有颜值高的小姐姐,并保存到本地。

    def play_next_video():
        """
        下一个视频
        从下往上滑动
        :return:
        """
        os.system("adb shell input swipe 540 1300 540 500 100")
    

    在脚本一条条刷视频的过程中,可能会遇到一下广告,我们需要对这类视频进行过滤。

    def is_a_ad():
        """
        判断的当前页面上是否是一条广告
        :return:
        """
        element = Element()
        ad_tips = ['去玩一下', '去体验', '立即下载']
    
        find_result = False
    
        for ad_tip in ad_tips:
            try:
                element_result = element.findElementByName(ad_tip)
                # 是一条广告,直接跳出
                find_result = True
                break
            except Exception as e:
                find_result = False
    
        return find_result
    

    结 果 结 论

    运行上面的脚本,会自动打开抖音,对每一条小视频多次进行人脸识别,直到识别到颜值高的小姐姐,保存视频到本地,然后继续刷下一条短视频。

    image

    本文首发于公众号「 AirPython 」,关注公众号,后台回复「 小姐姐 」即可获取完整代码。

    如果你觉得文章还不错,请大家点赞分享下。你的肯定是我最大的鼓励和支持。

    推荐阅读:

    制作抖音卡点视频?Python来帮你~

    薅羊毛 | 揭秘闲鱼方案,一部手机,实现随时随地薅羊毛

    THANDKS

    相关文章

      网友评论

        本文标题:抖音上好看的小姐姐,Python给你都下载了

        本文链接:https://www.haomeiwen.com/subject/tkjdxctx.html