美文网首页
TensorFlow学习笔记(三):神经网络算法

TensorFlow学习笔记(三):神经网络算法

作者: 张沐之_ | 来源:发表于2018-10-26 17:15 被阅读0次

    一维数据集上的神经网络

    # 1 引入包,创建会话
    import tensorflow as tf
    import numpy as np
    sess = tf.Session()
    
    # 2 初始化数据
    data_size = 25
    data_1d = np.random.normal(size=data_size)
    x_input_1d = tf.placeholder(dtype=tf.float32, shape=[data_size])
    
    # 3 定义卷积层
    def conv_layer_1d(input_1d, my_filter):
        # Make 1d input 4d
        input_2d = tf.expand_dims(input_1d, 0)
        input_3d = tf.expand_dims(input_2d, 0)
        input_4d = tf.expand_dims(input_3d, 3)
        # Perform convolution
        convolution_output = tf.nn.conv2d(input_4d, filter=my_filter, 
                                          strides=[1,1,1,1], padding='VALID')
        conv_output_1d = tf.squeeze(convolution_output)
        return conv_output_1d
        # Now drop extra dimensions
        
    my_filter = tf.Variable(tf.random_normal(shape=[1,5,1,1]))
    my_convolution_output = conv_layer_1d(x_input_1d, my_filter)
        
    # 4 激励函数
    def activation(input_1d):
        return tf.nn.relu(input_1d)
    my_activation_output = activation(my_convolution_output)
    
    # 池化
    def max_pool(input_1d, width):
        # First we make the 1d input into 4d.
        input_2d = tf.expand_dims(input_1d, 0)
        input_3d = tf.expand_dims(input_2d, 0)
        input_4d = tf.expand_dims(input_3d, 3)
        # Perform the max pool operation 
        pool_output = tf.nn.max_pool(input_4d, ksize=[1, 1, width, 1], strides=[1, 1, 1, 1],
                                     padding='VALID')
        pool_output_1d = tf.squeeze(pool_output)
        return pool_output_1d
    my_maxpool_output = max_pool(my_activation_output, width=5)
    
    # 全连接层
    def fully_connected(input_layer, num_outputs):
        # Create weights
        weight_shape = tf.squeeze(tf.stack([tf.shape(input_layer), [num_outputs]]))
        weight = tf.random_normal(weight_shape, stddev=0.1)
        bias = tf.random_normal(shape=[num_outputs])
        # make input into 2d
        input_layer_2d = tf.expand_dims(input_layer, 0)
        # perform fully connected operations
        full_output = tf.add(tf.matmul(input_layer_2d, weight), bias)
        # Drop extra dimmensions
        full_output_1d = tf.squeeze(full_output)
        return full_output_1d
    
    my_full_output = fully_connected(my_maxpool_output, 5)
    
    # 初始化变量,运行计算图大阴每层输出结果
    init = tf.global_variables_initializer()
    sess.run(init)
    feed_dict = {x_input_1d:data_1d}
    # Convolution Output
    print("Input = array of length 25")
    print("Convolution w/filter length = 5, stride size = 1, results in an array of legth 21:")
    print(sess.run(my_convolution_output, feed_dict = feed_dict))
    # Activation Output
    print('\nInput = the above array of length 21')
    print('Relu element wise returns the array of length 21:')
    print(sess.run(my_activation_output, feed_dict=feed_dict))
    # Maxpool output
    print('\nInput = the above array of length 21')
    print('MaxPool, window length = 5, stride size = 1, results in the array of length 17')
    print(sess.run(my_maxpool_output, feed_dict=feed_dict))
    # Fully Connected Output
    print('Input = the above array of length 17')
    print('Fully connected layer on all four rows with five outputs')
    print(sess.run(my_full_output, feed_dict=feed_dict))
    # 关闭会话
    sess.close()
    

    输出结果如下:

    Input = array of length 25
    Convolution w/filter length = 5, stride size = 1, results in an array of legth 21:
    [ 0.7306204   0.09220226 -0.8647339  -1.7677759   3.0679996  -0.42977548
     -1.4834487   2.084762   -0.63769084 -1.6181873   0.8859257   0.94589835
     -2.3447719   1.4659762   0.86647564 -0.5625909   0.02268941  1.3069543
     -1.5059514   3.0157318  -2.7027912 ]
    
    Input = the above array of length 21
    Relu element wise returns the array of length 21:
    [0.7306204  0.09220226 0.         0.         3.0679996  0.
     0.         2.084762   0.         0.         0.8859257  0.94589835
     0.         1.4659762  0.86647564 0.         0.02268941 1.3069543
     0.         3.0157318  0.        ]
    
    Input = the above array of length 21
    MaxPool, window length = 5, stride size = 1, results in the array of length 17
    [3.0679996  3.0679996  3.0679996  3.0679996  3.0679996  2.084762
     2.084762   2.084762   0.94589835 1.4659762  1.4659762  1.4659762
     1.4659762  1.4659762  1.3069543  3.0157318  3.0157318 ]
    Input = the above array of length 17
    Fully connected layer on all four rows with five outputs
    [ 1.8550391  -1.1319994   0.44229037 -1.3700286  -1.7920521 ]
    

    卷积层

    首先,卷积层输入序列是25个元素的一维数组。卷积层的功能是相邻5个元素与过滤器(长度为5的向量)内积。因为移动步长为1,所以25个元素的序列中一共有21个相邻为5的序列,最终输出也是5。

    激励函数

    将卷积成的输出,21个元素的向量通过relu函数逐元素转化。输出仍是21个元素的向量。

    池化层,最大值池化

    取相邻5个元素的最大值。输入21个元素的序列,输出17个元素的序列。

    全连接层

    上述17个元素通过全连接层,有5个输出。
    注意上述过程的输出都做了维度的裁剪。但在每一步的过程中都是扩充成4维张量操作的。

    二维数据上的神经网络

    # 1 引入包,创建会话
    import tensorflow as tf
    import numpy as np
    sess = tf.Session()
    
    # 2 创建数据和占位符
    data_size = [10, 10]
    data_2d = np.random.normal(size=data_size)
    x_input_2d = tf.placeholder(dtype=tf.float32, shape=data_size)
    
    # 3 卷积层:2x2过滤器
    def conv_layer_2d(input_2d, my_filter):
        # First, change 2d input to 4d
        input_3d = tf.expand_dims(input_2d, 0)
        input_4d = tf.expand_dims(input_3d, 3)
        # Perform convolution
        convolution_output = tf.nn.conv2d(input_4d, filter=my_filter, strides=[1,2,2,1], padding='VALID')
        # Drop extra dimensions
        conv_output_2d = tf.squeeze(convolution_output)
        return conv_output_2d
    my_filter = tf.Variable(tf.random_normal(shape=[2,2,1,1]))
    my_convolution_output = conv_layer_2d(x_input_2d, my_filter)
    # 4 激励函数
    def activation(input_2d):
        return tf.nn.relu(input_2d)
    my_activation_output = activation(my_convolution_output)
    # 5 池化层
    def max_pool(input_2d, width, height):
        # Make 2d input into 4d
        input_3d = tf.expand_dims(input_2d, 0)
        input_4d = tf.expand_dims(input_3d, 3)
        # Perform max pool
        pool_output = tf.nn.max_pool(input_4d, ksize=[1, height, width, 1], strides=[1,1,1,1], padding='VALID')
        # Drop extra dimensions
        pool_output_2d = tf.squeeze(pool_output)
        return pool_output_2d
    my_maxpool_output = max_pool(my_activation_output, width=2, height=2)
    # 6 全连接层
    def fully_connected(input_layer, num_outputs):
        # Flatten into 1d
        flat_input = tf.reshape(input_layer, [-1])
        # Create weights
        weight_shape = tf.squeeze(tf.stack([tf.shape(flat_input), [num_outputs]]))
        weight = tf.random_normal(weight_shape, stddev=0.1)
        bias = tf.random_normal(shape=[num_outputs])
        # Change into 2d
        input_2d = tf.expand_dims(flat_input, 0)
        # Perform fully connected operations
        full_output = tf.add(tf.matmul(input_2d, weight), bias)
        # Drop extra dimensions
        full_output_2d = tf.squeeze(full_output)
        return full_output_2d
    my_full_output = fully_connected(my_maxpool_output, 5)
    # 7 初始化变量
    init = tf.initialize_all_variables()
    sess.run(init)
    
    feed_dict = {x_input_2d: data_2d}
    # 8 打印每层输出结果
    # Convolution Output
    print('Input = [10 x 10] array')
    print('2x2 Convolution, stride size = [2x2], results in the [5x5] array:')
    print(sess.run(my_convolution_output, feed_dict=feed_dict))
    # Activation Output
    print('\nInput = the above [5x5] array')
    print('Relu element wise returns the [5x5] array:')
    print(sess.run(my_activation_output, feed_dict=feed_dict))
    # Max Pool Output
    print('\nInput = the above [5x5] array')
    print('[2x2] MaxPool, stride size = [1x1] results in the [4x4] array:')
    print(sess.run(my_maxpool_output, feed_dict = feed_dict))
    # Fully connected output
    print('\nInput = the above [4x4] array')
    print('Fully connected layer on all four rows with five outputs:')
    print(sess.run(my_full_output, feed_dict=feed_dict))
    

    输出结果如下:

    Input = [10 x 10] array
    2x2 Convolution, stride size = [2x2], results in the [5x5] array:
    [[ 0.80993664 -1.2700474   0.27375805  0.54493535 -1.0037322 ]
     [-1.2054954   2.7807589  -0.9015032  -0.24516574  2.126141  ]
     [ 0.19843565 -0.3517378   2.624067   -3.2827137   1.0169035 ]
     [-1.3321284  -0.98290706  0.7477172   1.655221    1.5588429 ]
     [ 1.2763401   0.88586557 -2.230918   -1.5759512   1.1120629 ]]
    
    Input = the above [5x5] array
    Relu element wise returns the [5x5] array:
    [[0.80993664 0.         0.27375805 0.54493535 0.        ]
     [0.         2.7807589  0.         0.         2.126141  ]
     [0.19843565 0.         2.624067   0.         1.0169035 ]
     [0.         0.         0.7477172  1.655221   1.5588429 ]
     [1.2763401  0.88586557 0.         0.         1.1120629 ]]
    
    Input = the above [5x5] array
    [2x2] MaxPool, stride size = [1x1] results in the [4x4] array:
    [[2.7807589  2.7807589  0.54493535 2.126141  ]
     [2.7807589  2.7807589  2.624067   2.126141  ]
     [0.19843565 2.624067   2.624067   1.655221  ]
     [1.2763401  0.88586557 1.655221   1.655221  ]]
    
    Input = the above [4x4] array
    Fully connected layer on all four rows with five outputs:
    [ 0.7709798  -0.2126801  -0.7047844   0.89408153 -0.46939346]
    

    TensorFlow 实现多层神经网络

    # 1 引入包
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import requests
    import numpy as np
    import os
    import csv
    sess = tf.Session()
    
    # 2 导入数据
    # name of data file
    birth_weight_file = 'birth_weight.csv'
    birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master' \
                    '/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
    
    # Download data and create data file if file does not exist in current directory
    if not os.path.exists(birth_weight_file):
        birth_file = requests.get(birthdata_url)
        birth_data = birth_file.text.split('\r\n')
        birth_header = birth_data[0].split('\t')
        birth_data = [[float(x) for x in y.split('\t') if len(x) >= 1]
                      for y in birth_data[1:] if len(y) >= 1]
        with open(birth_weight_file, "w") as f:
            writer = csv.writer(f)
            writer.writerows([birth_header])
            writer.writerows(birth_data)
    
    # read birth weight data into memory
    birth_data = []
    with open(birth_weight_file, newline='') as csvfile:
        csv_reader = csv.reader(csvfile)
        birth_header = next(csv_reader)
        for row in csv_reader:
            if len(row)>0:
                birth_data.append(row)
    
    birth_data = [[float(x) for x in row] for row in birth_data]
    
    # Extract y-target (birth weight)
    y_vals = np.array([x[8] for x in birth_data])
    
    # Filter for features of interest
    cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI']
    x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest]
                       for x in birth_data])
    
    # 3 设置种子        
    seed = 4
    tf.set_random_seed(seed)
    np.random.seed(seed)
    batch_size = 100
    
    # 4 划分训练集和测试集
    train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
    test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
    x_vals_train = x_vals[train_indices]
    x_vals_test = x_vals[test_indices]
    y_vals_train = y_vals[train_indices]
    y_vals_test = y_vals[test_indices]
    
    def normalize_cols(m):
        col_max = m.max(axis=0)
        col_min = m.min(axis=0)
        return (m - col_min) /(col_max - col_min)
    
    x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
    x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))
    
    # 5 定义一个设置变量和bias的函数
    def init_weight(shape, st_dev):
        weight = tf.Variable(tf.random_normal(shape, stddev=st_dev))
        return weight
    def init_bias(shape, st_dev):
        bias = tf.Variable(tf.random_normal(shape, stddev=st_dev))
        return bias
    
    # 6 初始化占位符
    x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
    y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    
    # 7 创建全连接层函数,方便重复使用
    def fully_connected(input_layer, weights, biases):
        layer = tf.add(tf.matmul(input_layer, weights), biases)
        return tf.nn.relu(layer)
    
    # 8 创建算法模型
    # Create second layer (25 hidden nodes)
    weight_1 = init_weight(shape=[7, 25], st_dev=10.0)
    bias_1 = init_weight(shape=[25], st_dev=10.0)
    layer_1 = fully_connected(x_data, weight_1, bias_1)
    
    # Create second layer (10 hidden nodes)
    weight_2 = init_weight(shape=[25, 10], st_dev=10.0)
    bias_2 = init_weight(shape=[10], st_dev=10.0)
    layer_2 = fully_connected(layer_1, weight_2, bias_2)
    
    # Create third layer (3 hidden nodes)
    weight_3 = init_weight(shape=[10, 3], st_dev=10.0)
    bias_3 = init_weight(shape=[3], st_dev=10.0)
    layer_3 = fully_connected(layer_2, weight_3, bias_3)
    
    # Create output layer (1 output value)
    weight_4 = init_weight(shape=[3, 1], st_dev=10.0)
    bias_4 = init_bias(shape=[1], st_dev=10.0)
    final_output = fully_connected(layer_3, weight_4, bias_4)
    
    # 9 L1损失函数
    loss = tf.reduce_mean(tf.abs(y_target - final_output))
    my_opt = tf.train.AdamOptimizer(0.05)
    train_step = my_opt.minimize(loss)
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # 10 迭代200
    # Initialize the loss vectors
    loss_vec = []
    test_loss = []
    for i in range(200):
        # Choose random indices for batch selection
        rand_index = np.random.choice(len(x_vals_train), size=batch_size)
        # Get random batch
        rand_x = x_vals_train[rand_index]
        rand_y = np.transpose([y_vals_train[rand_index]])
        # Run the training step
        sess.run(train_step, feed_dict={x_data: rand_x, y_target:rand_y})
        # Get and store the train loss
        temp_loss = sess.run(loss, feed_dict = {x_data:rand_x, y_target:rand_y})
        loss_vec.append(temp_loss)
        # get and store the test loss
        test_temp_loss = sess.run(loss, feed_dict = {x_data:x_vals_test, y_target:np.transpose([y_vals_test])})
        test_loss.append(test_temp_loss)
        if (i+1)% 25 == 0:
            print('Generation: ' + str(i+1)+'.Loss = ' + str(temp_loss))
    
    
    # 12 绘图
    plt.plot(loss_vec, 'k-', label='Train Loss')
    plt.plot(test_loss, 'r--', label='Test Loss')
    plt.title('Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('Loss')
    plt.legend(loc='upper right')
    plt.show()
    
    # Model Accuracy
    actuals = np.array([x[0] for x in birth_data])
    test_actuals = actuals[test_indices]
    train_actuals = actuals[train_indices]
    test_preds = [x[0] for x in sess.run(final_output, feed_dict={x_data: x_vals_test})]
    train_preds = [x[0] for x in sess.run(final_output, feed_dict={x_data: x_vals_train})]
    test_preds = np.array([0.0 if x < 2500.0 else 1.0 for x in test_preds])
    train_preds = np.array([0.0 if x < 2500.0 else 1.0 for x in train_preds])
    # Print out accuracies
    test_acc = np.mean([x == y for x, y in zip(test_preds, test_actuals)])
    train_acc = np.mean([x == y for x, y in zip(train_preds, train_actuals)])
    print('On predicting the category of low birthweight from regression output (<2500g):')
    print('Test Accuracy: {}'.format(test_acc))
    print('Train Accuracy: {}'.format(train_acc))
    

    实现了一个含有三层隐藏层的全连接神经网络。


    线性预测模型的优化

    # 1 导入必要的库
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    import requests
    import os
    import csv
    sess = tf.Session()
    
    # 加载数据集,进行数据抽取和归一化
    # name of data file
    birth_weight_file = 'birth_weight.csv'
    birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master' \
                    '/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
    
    # Download data and create data file if file does not exist in current directory
    if not os.path.exists(birth_weight_file):
        birth_file = requests.get(birthdata_url)
        birth_data = birth_file.text.split('\r\n')
        birth_header = birth_data[0].split('\t')
        birth_data = [[float(x) for x in y.split('\t') if len(x) >= 1]
                      for y in birth_data[1:] if len(y) >= 1]
        with open(birth_weight_file, "w") as f:
            writer = csv.writer(f)
            writer.writerows([birth_header])
            writer.writerows(birth_data)
    
    # read birth weight data into memory
    birth_data = []
    with open(birth_weight_file, newline='') as csvfile:
        csv_reader = csv.reader(csvfile)
        birth_header = next(csv_reader)
        for row in csv_reader:
            if len(row)>0:
                birth_data.append(row)
    
    birth_data = [[float(x) for x in row] for row in birth_data]
    
    # Extract y-target (birth weight)
    y_vals = np.array([x[0] for x in birth_data])
    
    # Filter for features of interest
    cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI']
    x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest]
                       for x in birth_data])
    
    # 4 划分训练集和测试集
    train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
    test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
    x_vals_train = x_vals[train_indices]
    x_vals_test = x_vals[test_indices]
    y_vals_train = y_vals[train_indices]
    y_vals_test = y_vals[test_indices]
    
    def normalize_cols(m):
        col_max = m.max(axis=0)
        col_min = m.min(axis=0)
        return (m - col_min) /(col_max - col_min)
    
    x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
    x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))
    
    # 3 声明批量大小和占位符
    batch_size = 90
    x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
    y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    
    # 4 声明函数来初始化变量和层
    def init_variable(shape):
        return tf.Variable(tf.random_normal(shape=shape))
    
    # Create a logistic layer definition
    def logistic(input_layer, multiplication_weight, bias_weight, activation=True):
        linear_layer = tf.add(tf.matmul(input_layer, multiplication_weight), bias_weight)
        
        if activation :
            return tf.nn.sigmoid(linear_layer)
        else :
            return linear_layer
    
    # 5 声明神经网络的两个隐藏层和输出层
    # First logistic layer (7 inputs to 14 hidden nodes)
    A1 = init_variable(shape=[7, 14])
    b1 = init_variable(shape=[14])
    logistic_layer1 = logistic(x_data, A1, b1)
    # Second logistic layer (14 inputs to 5 hidden nodes)
    A2 = init_variable(shape=[14, 5])
    b2 = init_variable(shape=[5])
    logistic_layer2 = logistic(logistic_layer1, A2, b2)
    # Final output layer (5 hidden nodes to 1 output)
    A3 = init_variable(shape=[5, 1])
    b3 = init_variable(shape=[1])
    final_output = logistic(logistic_layer2, A3, b3, activation=False)
    
    # 6 声明损失函数和优化方法
    # Create loss function
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            labels = y_target, logits=final_output))
    # Declare optimizer 
    my_opt = tf.train.AdamOptimizer(learning_rate = 0.002)
    train_step = my_opt.minimize(loss)
    # Initialize variables
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # 7 评估精度
    prediction = tf.round(tf.nn.sigmoid(final_output))
    predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
    accuracy = tf.reduce_mean(predictions_correct)
    
    # 8 迭代训练模型
    # Initialize loss and accuracy vectors
    loss_vec = []
    train_acc = []
    test_acc = []
    for i in range(1500):
        # Select random indicies for batch selection
        rand_index = np.random.choice(len(x_vals_train), size=batch_size)
        # Select batch
        rand_x = x_vals_train[rand_index]
        rand_y = np.transpose([y_vals_train[rand_index]])
        # Run training step
        sess.run(train_step, feed_dict={x_data:rand_x, y_target:rand_y})
        # Get training loss
        temp_loss = sess.run(loss, feed_dict={x_data:rand_x, y_target:rand_y})
        loss_vec.append(temp_loss)
        # Get training accuracy
        temp_acc_train = sess.run(accuracy, feed_dict = {x_data:x_vals_train, y_target:np.transpose([y_vals_train])})
        train_acc.append(temp_acc_train)
        # Get test accuracy
        temp_acc_test = sess.run(accuracy, feed_dict = {x_data:x_vals_test, y_target:np.transpose([y_vals_test])})
        test_acc.append(temp_acc_test)
        if (i+1)%150==0:
            print('Loss = ' + str(temp_loss))
            
    # 9 绘图
    # Plot loss over time
    plt.plot(loss_vec, 'k-')
    plt.title('Cross Entropy Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('Cross Entropy Loss')
    plt.show()
    # Plot train and test accuracy
    plt.plot(train_acc, 'k-', label='Train Set Accuracy')
    plt.plot(test_acc, 'r--', label='Test Set Accuracy')
    plt.title('Train and Test Accuracy')
    plt.xlabel('Generation')
    plt.ylabel('Accuracy')
    plt.legend(loc='lower right')
    plt.show()
    

    这一个仍然是全连接,只是只有两层隐藏层,节点数也减少了。

    相关文章

      网友评论

          本文标题:TensorFlow学习笔记(三):神经网络算法

          本文链接:https://www.haomeiwen.com/subject/tklctqtx.html