问题提出
- ArrayList底层采用什么数据结构?
- ArrayList是如何扩容的?
- 频繁扩容导致性能下降如何处理?
- 什么情况下你会使用ArrayList?
- 如何复制某个ArrayList到另一个ArrayList中去?
- ArrayList插入或删除元素一定慢么?
- ArrayList是线程安全的么?
下面就带着问题往下看吧~
重要属性
//默认的初始化容量
private static final int DEFAULT_CAPACITY = 10;
//空的对象数组
private static final Object[] EMPTY_ELEMENTDATA = {};
//使用默认构造函数创建对象时使用该空对象数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
//存放数据的容器
transient Object[] elementData;
//数组长度
private int size;
//数组最大长度
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
构造器
/**
* 传入指定容量大小
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
}
}
/**
* 无参的构造方法
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
添加数据
add(E e);
add(int index, E element);
addAll(int index, Collection<? extends E> c);
addAll(Collection<? extends E> c);
添加单个数据
注意:这里使用无参构造函数,第一次添加数据作为例子
public boolean add(E e) {
//扩容处理
ensureCapacityInternal(size + 1); // Increments modCount!!
//添加数据到数组末尾
elementData[size++] = e;
return true;
}
先进行扩容处理
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
/**
* 如果当前还未存入数据(空数组),返回默认长度10 (第一次添加数据,数组容量为10)
* 否则,返回当前数组长度+1
*/
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
//集合修改次数加1
modCount++;
//判断当前数组是否有剩余空间,没有调用grow(minCapacity);
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
//扩容新容量=旧容量+旧容量/2
int newCapacity = oldCapacity + (oldCapacity >> 1);
//扩容后的新容量小于所需的容量,则新容量等于所需容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//新容量若对于最大容量值,则调用方法后获取一个最大容量值
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
//拷贝已有的数组到扩容后新数组
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
-
扩容处理逻辑如下:
容量扩充 (1).jpg
添加数据到指定位置
逻辑:先将指定位置元素都往后移动一个位置,再将新元素放在指定位置。
public void add(int index, E element) {
//越界检测
rangeCheckForAdd(index);
//扩容处理
ensureCapacityInternal(size + 1); // Increments modCount!!
//对源数组做复制处理,后移(index+1 ~ size-index)
System.arraycopy(elementData, index, elementData, index + 1, size - index);
elementData[index] = element;
size++;
}
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
添加集合数据到指定位置
public boolean addAll(int index, Collection<? extends E> c) {
//越界检测
rangeCheckForAdd(index);
//转化为数组
Object[] a = c.toArray();
//需要插入的数据个数
int numNew = a.length;
//扩容处理
ensureCapacityInternal(size + numNew); // Increments modCount
//需要移动的位数
int numMoved = size - index;
//若插入位置当前已有数据,移位
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew, numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
添加集合数据
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
//直接copy数据到容器中
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
删除元素
remove(int index);
remove(Object o);
removeAll(Collection<?> c);
clear();
删除指定位置的元素
public E remove(int index) {
rangeCheck(index);
//集合修改次数加1
modCount++;
//取出需要删除的对象赋值给oldValue
E oldValue = elementData(index);
//需要移动的数据长度
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//数据在末尾直接删除
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
删除指定对象
public boolean remove(Object o) {
//遍历数组找出要删除的数据,删除它
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
//集合改变数据加1
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
删除指定的集合元素
public boolean removeAll(Collection<?> c) {
//判断对象是否为null
Objects.requireNonNull(c);
return batchRemove(c, false);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
//遍历数组,找出不需要删除的元素保存在数组前面
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
//未完成遍历出错的情况下。
if (r != size) {
System.arraycopy(elementData, r,elementData, w,size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
//w为已经移到数组前面需要保留的数据,删除w之后的数据
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
删除所有元素
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
set方法 get方法
/**
* Replaces the element at the specified position in this list with
* the specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
转为数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
//转化为任意类型的数组
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
小结
- ArrayList 采用动态数组。适合快速查找数据,不适合删除和添加操作
- 频繁扩容导致性能下降,可以初始化估计容量大小的arrayList
- ArrayList 线程不安全
网友评论