美文网首页GoCoding
TensorFlow 的 JupyterLab 环境

TensorFlow 的 JupyterLab 环境

作者: GoCodingInMyWay | 来源:发表于2021-04-14 08:58 被阅读0次

    TensorFlow 准备 JupyterLab 交互式笔记本环境,方便我们边写代码、边做笔记。

    基础环境

    以下是本文的基础环境,不详述安装过程了。

    Ubuntu

    CUDA

    • CUDA 11.2.2
      • cuda_11.2.2_460.32.03_linux.run
    • cuDNN 8.1.1
      • libcudnn8_8.1.1.33-1+cuda11.2_amd64.deb
      • libcudnn8-dev_8.1.1.33-1+cuda11.2_amd64.deb
      • libcudnn8-samples_8.1.1.33-1+cuda11.2_amd64.deb

    Anaconda

    conda activate base
    

    安装 JupyterLab

    Anaconda 环境里已有,如下查看版本:

    jupyter --version
    

    不然,如下进行安装:

    conda install -c conda-forge jupyterlab
    

    安装 TensorFlow

    创建虚拟环境 tf,再 pip 安装 TensorFlow:

    # create virtual environment
    conda create -n tf python=3.8 -y
    conda activate tf
    
    # install tensorflow
    pip install --upgrade pip
    pip install tensorflow
    

    测试:

    $ python - <<EOF
    import tensorflow as tf
    print(tf.__version__, tf.test.is_built_with_gpu_support())
    print(tf.config.list_physical_devices('GPU'))
    EOF
    
    2021-04-01 11:18:17.719061: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
    2.4.1 True
    2021-04-01 11:18:18.437590: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
    2021-04-01 11:18:18.437998: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
    2021-04-01 11:18:18.458471: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2021-04-01 11:18:18.458996: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
    pciBusID: 0000:01:00.0 name: GeForce RTX 2060 computeCapability: 7.5
    coreClock: 1.35GHz coreCount: 30 deviceMemorySize: 5.79GiB deviceMemoryBandwidth: 245.91GiB/s
    2021-04-01 11:18:18.459034: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
    2021-04-01 11:18:18.461332: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
    2021-04-01 11:18:18.461362: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
    2021-04-01 11:18:18.462072: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
    2021-04-01 11:18:18.462200: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
    2021-04-01 11:18:18.462745: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
    2021-04-01 11:18:18.463241: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
    2021-04-01 11:18:18.463353: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
    2021-04-01 11:18:18.463415: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2021-04-01 11:18:18.463854: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2021-04-01 11:18:18.464170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
    [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
    

    Solution: Could not load dynamic library 'libcusolver.so.10'

    cd /usr/local/cuda/lib64
    sudo ln -sf libcusolver.so.11 libcusolver.so.10
    

    安装 IPython kernel

    在虚拟环境 tf 里,安装 ipykernel 与 Jupyter 交互。

    # install ipykernel (conda new environment)
    conda activate tf
    conda install ipykernel -y
    python -m ipykernel install --user --name tf --display-name "Python TF"
    
    # run JupyterLab (conda base environment with JupyterLab)
    conda activate base
    jupyter lab
    

    另一种方式,可用 nb_conda 扩展,其于笔记里会激活 Conda 环境:

    # install ipykernel (conda new environment)
    conda activate tf
    conda install ipykernel -y
    
    # install nb_conda (conda base environment with JupyterLab)
    conda activate base
    conda install nb_conda -y
    # run JupyterLab
    jupyter lab
    

    最后,访问 http://localhost:8888/

    image

    参考

    GoCoding 个人实践的经验分享,可关注公众号!

    相关文章

      网友评论

        本文标题:TensorFlow 的 JupyterLab 环境

        本文链接:https://www.haomeiwen.com/subject/tnqklltx.html