美文网首页Dubbo源码解析rpc专家
Dubbo之LoadBalance源码分析

Dubbo之LoadBalance源码分析

作者: 土豆肉丝盖浇饭 | 来源:发表于2018-07-31 00:43 被阅读13次

前言

LoadBalance,就是负载均衡,那么何为负载均衡,就是让服务提供者相对平摊请求,不要出现请求总落在一个提供者的情况

接口定义

@SPI(RandomLoadBalance.NAME)
public interface LoadBalance {

    /**
     * select one invoker in list.
     *
     * @param invokers   invokers.
     * @param url        refer url
     * @param invocation invocation.
     * @return selected invoker.
     */
    @Adaptive("loadbalance")
    <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException;

}

select方法作用是从invokers选出下一个被调用的invoker,具体有哪些策略,如下

然后这个LoadBalance主要使用在Cluster模块中。比如failover选择下一个invoker。

下面开始源码讲解

源码

AbstractLoadBalance

上述4中策略的实现,都会继承AbstractLoadBalance这个模板类,在这个模板类中封装了getWeight方法,获取invoker的权重,特别的是,这个权重和预热时间有关,只有提供者在线时长到达了预热时间,调用这个方法获取invoker权重的时候,才能获得100%的权重。在子类中获取invoker权重都是调用这个方法

看下带有预热逻辑的权重方法

 //计算预热权重
    protected int getWeight(Invoker<?> invoker, Invocation invocation) {
        int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
        if (weight > 0) {
            long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
            if (timestamp > 0L) {
                //提供者在线时长
                int uptime = (int) (System.currentTimeMillis() - timestamp);
                //预热时间默认10分钟
                int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
                if (uptime > 0 && uptime < warmup) {
                    weight = calculateWarmupWeight(uptime, warmup, weight);
                }
            }
        }
        return weight;
    }

//用于计算预热权重
    static int calculateWarmupWeight(int uptime, int warmup, int weight) {
        int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
        return ww < 1 ? 1 : (ww > weight ? weight : ww);
    }

AbstractLoadBalance实现了select方法,增加了对invoker数量的判断,如果只有一个直接返回,invokers超过1个才需要使用负载均衡选择逻辑,具体负载均衡逻辑由子类实现doSelect方法

@Override
    public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        if (invokers == null || invokers.isEmpty())
            return null;
        //如果只有一个提供者直接返回,预热失效
        if (invokers.size() == 1)
            return invokers.get(0);
        return doSelect(invokers, url, invocation);
    }

    //让子类实现doSelect
    protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation);

为什么要预热,jvm运行时会对字节码进行优化,刚启动的字节码肯定不是最优的。或者是提供者本身有其他缓存需要初始化之类的。所以预热是有必要的。不要一启动就和其他提供者承受同样流量,可能效率会变慢。当然,如果只有一个提供者的情况下,预热就失效了。

RandomLoadBalance

随机算法,如果每个invokers权重一样,那么就是普通的随机算法,如果不同就是加权随机

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size(); // Number of invokers
        int totalWeight = 0; // The sum of weights
        boolean sameWeight = true; // Every invoker has the same weight?
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            totalWeight += weight; // Sum
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false;
            }
        }
        //如果提供者权重不一样,加权随机
        if (totalWeight > 0 && !sameWeight) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offset = random.nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < length; i++) {
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    return invokers.get(i);
                }
            }
        }
        //如果提供者权重都一样,普通随机
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(random.nextInt(length));
    }

RoundRobinLoadBalance

轮训算法。如果每个invoker权重一样,就是普通的轮训算法。如果不同,是加权的轮训算法。

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int length = invokers.size(); // Number of invokers
        int maxWeight = 0; // The maximum weight
        int minWeight = Integer.MAX_VALUE; // The minimum weight
        final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
        int weightSum = 0;
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight
            minWeight = Math.min(minWeight, weight); // Choose the minimum weight
            if (weight > 0) {
                invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
                weightSum += weight;
            }
        }
        AtomicPositiveInteger sequence = sequences.get(key);
        if (sequence == null) {
            sequences.putIfAbsent(key, new AtomicPositiveInteger());
            sequence = sequences.get(key);
        }
        int currentSequence = sequence.getAndIncrement();
        //如果每个提供者权重不一样,采用加权轮训
        if (maxWeight > 0 && minWeight < maxWeight) {
            int mod = currentSequence % weightSum;
            for (int i = 0; i < maxWeight; i++) {
                for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
                    final Invoker<T> k = each.getKey();
                    final IntegerWrapper v = each.getValue();
                    if (mod == 0 && v.getValue() > 0) {
                        return k;
                    }
                    if (v.getValue() > 0) {
                        v.decrement();
                        mod--;
                    }
                }
            }
        }
        //每个服务提供者权重一样,就是普通轮训
        // Round robin
        return invokers.get(currentSequence % length);
    }

LeastActiveLoadBalance

最少活跃调用数。如果最小活跃调用数的invokers大于1,如果这些invokers权重相同,采用随机算法选出invoker。如不同,采用加权随机算法。

@Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size(); // Number of invokers
        int leastActive = -1; // The least active value of all invokers
        int leastCount = 0; // The number of invokers having the same least active value (leastActive)
        int[] leastIndexs = new int[length]; // The index of invokers having the same least active value (leastActive)
        int totalWeight = 0; // The sum of weights
        int firstWeight = 0; // Initial value, used for comparision
        boolean sameWeight = true; // Every invoker has the same weight value?
        //获取leasractive的数组
        for (int i = 0; i < length; i++) {
            Invoker<T> invoker = invokers.get(i);
            int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // Active number
            int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // Weight
            if (leastActive == -1 || active < leastActive) { // Restart, when find a invoker having smaller least active value.
                leastActive = active; // Record the current least active value
                leastCount = 1; // Reset leastCount, count again based on current leastCount
                leastIndexs[0] = i; // Reset
                totalWeight = weight; // Reset
                firstWeight = weight; // Record the weight the first invoker
                sameWeight = true; // Reset, every invoker has the same weight value?
            } else if (active == leastActive) { // If current invoker's active value equals with leaseActive, then accumulating.
                leastIndexs[leastCount++] = i; // Record index number of this invoker
                totalWeight += weight; // Add this invoker's weight to totalWeight.
                // If every invoker has the same weight?
                if (sameWeight && i > 0
                        && weight != firstWeight) {
                    sameWeight = false;
                }
            }
        }
        // assert(leastCount > 0)
        if (leastCount == 1) {
            // If we got exactly one invoker having the least active value, return this invoker directly.
            return invokers.get(leastIndexs[0]);
        }
        //在leastactive数组里面加权随机选择一个
        if (!sameWeight && totalWeight > 0) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offsetWeight = random.nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < leastCount; i++) {
                int leastIndex = leastIndexs[i];
                offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
                if (offsetWeight <= 0)
                    return invokers.get(leastIndex);
            }
        }
        //在leastative数组内随机选择一个
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(leastIndexs[random.nextInt(leastCount)]);
    }

活跃调用次数会通过ActiveLimitFilter记录在RpcStatus中

ConsistentHashLoadBalance

一致性hash算法。通过调用的参数进行一致性hash,和权重无关。

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String methodName = RpcUtils.getMethodName(invocation);
        String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;
        int identityHashCode = System.identityHashCode(invokers);
        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
        if (selector == null || selector.identityHashCode != identityHashCode) {
            //生成新的虚拟节点,只有新增或删除的那一段会出现问题
            selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, identityHashCode));
            selector = (ConsistentHashSelector<T>) selectors.get(key);
        }
        return selector.select(invocation);
    }

一致性hash的主要逻辑都在ConsistentHashSelector中,在它的构造函数中会生成虚拟节点。默认每个invoker 160个。hash环的总节点数为2的32次方-1个

ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = identityHashCode;
            URL url = invokers.get(0).getUrl();
            //每个invoker生成的虚拟节点数
            this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
            String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                //生成虚拟节点
                String address = invoker.getUrl().getAddress();
                for (int i = 0; i < replicaNumber / 4; i++) {
                    byte[] digest = md5(address + i);
                    for (int h = 0; h < 4; h++) {
                        long m = hash(digest, h);
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }

然后通过对方法参数的hash去取得对应的invoker

public Invoker<T> select(Invocation invocation) {
            String key = toKey(invocation.getArguments());
            byte[] digest = md5(key);
            return selectForKey(hash(digest, 0));
        }

        private String toKey(Object[] args) {
            StringBuilder buf = new StringBuilder();
            for (int i : argumentIndex) {
                if (i >= 0 && i < args.length) {
                    buf.append(args[i]);
                }
            }
            return buf.toString();
        }

        private Invoker<T> selectForKey(long hash) {
            //取大于hash的下一个节点
            Map.Entry<Long, Invoker<T>> entry = virtualInvokers.tailMap(hash, true).firstEntry();
            if (entry == null) {
                //hash大于最后一个节点,取第一个节点
                entry = virtualInvokers.firstEntry();
            }
            return entry.getValue();
        }

tailMap方法用于取得virtualInvokers中key的hash大于参数hash的子Map,由于virtualInvokers是TreeMap,并且key为long类型,所以子Map的第一个Entry就对应hash环中的相匹配的invoker。

关于一致性hash可以看下面这篇文章(https://www.cnblogs.com/lpfuture/p/5796398.html)


node对应我们的invoker的hash
键对应我们参数的hash
通过一致性hash,能够保证大部分情况下,参数一致的请求落到同一个提供者。如果提供者发生上下线,只会影响一小部分的请求。

总结

LoadBalance中好多算法,加权随机,加权轮训以及一致性hash真是有意思。大家好好体会这个源码,看懂了,真是很有意思。

最后

希望大家关注下我的公众号


相关文章

网友评论

    本文标题:Dubbo之LoadBalance源码分析

    本文链接:https://www.haomeiwen.com/subject/tnrvsftx.html