美文网首页
MATLAB深度学习工具箱使用教程

MATLAB深度学习工具箱使用教程

作者: xyxyxyxy呀 | 来源:发表于2018-12-28 16:18 被阅读0次

    一、introduction

    深度学习对于图像识别

    二、using pretrained Networks

    1、加载并显示图像

    img1 = imread('file01.jpg');

    imshow(img1)

    2、预测

    deepnet = alexnet; %获取预训练模型

    pred1 = classify(deepnet, img1); %预测img1

    3、获取其他预训练模型

    4、examine network layers

    deepnet = alexnet;  %获取预训练网络

    ly = deepnet.Layers;%获取网络layers

    inlayer = ly(1); %获取输入层结构

    insz = inlayer.InputSize; %获取输入层size

    outlayer = ly(end); %获取输出层

    categorynames = outlayer.Classes; %获取最后一层的class

    5、investigating predictions

    分类函数返回输入图像的预测类,但是有办法知道网络对这个分类有多“自信”吗?在决定如何处理输出时,考虑这种信心可能很重要。

    为了将输入分类为n个类中的一个,神经网络有一个由n个神经元组成的输出层,每个神经元对应一个类。通过网络传递输入结果是为每个神经元计算一个数值。这些数值表示网络对属于每个类的输入概率的预测。

    img = imread('file01.jpg');

    imshow(img)

    net = alexnet;

    categorynames = net.Layers(end).ClassNames;

    [pred, scores] = classify(net, img);  %获得预测结果和自信分数

    bar(scores); %Display scores

    highscores = scores > 0.01; %Threshold scores

    bar(scores(highscores)); %Display thresholded scores

    xticklabels(categorynames(highscores)); %Add tick labels

    三、managing collections of data

    1、creating a datastore

    ls *.jpg

    net = alexnet;

    imds = imageDatastore('file*.jpg'); %创建datastore

    fname = imds.Files; %提取文件名

    img = readimage(imds, 7);  %读取图像

    preds = classify(net, imds); %图片分类

    2、 Preparing Images to Use as Input: Adjust input images

    Process Images for Classification

    img = imread('file01.jpg');

    imshow(img);

    sz = size(img);  %读取图像大小

    net = alexnet;

    insz = net.Layers(1).InputSize;  %输入层图像大小

    img = imresize(img, [227, 227]);  

    imshow(img);

    3、Processing Images in a Datastore: (2/3) Creating an augmented image datastore

    Resize Images in a Datastore

    ls *.jpg

    net = alexnet;

    imds = imageDatastore('*.jpg');

    auds = augmentedImageDatastore([227,227], imds); %Create augmentedImageDatastore

    preds = classify(net, auds)

    Processing Images in a Datastore: (3/3) Color preprocessing with augmented image datastores

    augmentedImageDatastore可以对彩色图片进行处理

    ls *.jpg

    net = alexnet;

    imds = imageDatastore('file*.jpg');

    montage(imds); %Display images in imds

    auds = augmentedImageDatastore([227,227], imds, 'ColorPreprocessing', 'gray2rgb') %Create augmentedImageDatastore

    preds = classify(net, auds)

    Create a Datastore Using Subfolders

    net = alexnet;

    flwrds = imageDatastore('Flowers', 'IncludeSubfolders',true);

    preds = classify(net,flwrds)

    四、transfer learn

    1、原因

    (1)原有NET不能解决有效自己的问题

    (2)自己训练一个全新的网络--网络结构与随机权重,需要具有网络架构方面的知识和经验、大量的训练数据、大量的计算时间

    2、Components Needed for Transfer Learning: (1/2) The components of transfer learning

    3、 Preparing Training Data: (1/3) Labeling images

    Label Images in a Datastore

    load pathToImages

    flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true);  %This code creates a datastore of 960 flower images.

    flowernames = flwrds.Labels

    flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames')  %Create datastore with labels

    flowernames = flwrds.Labels  %Extract new labels

    Preparing Training Data: (2/3) Split data for training and testing

    Split Data for Training and Testing

    Instructions are in the task pane to the left. Complete and submit each task one at a time.

    This code creates a datastore of 960 flower images.

    load pathToImages

    flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames')

    Task 1

    Split datastore

    [flwrTrain, flwrTest] = splitEachLabel(flwrds, 0.6)

    Task 2

    Split datastore randomly

    [flwrTrain, flwrTest] = splitEachLabel(flwrds, 0.8, 'randomized')

    Task 3

    Split datastore by number of images

    [flwrTrain, flwrTest] = splitEachLabel(flwrds,50)

    Preparing Training Data: (3/3) Augmented training data

    4、微调思路
    (1)Recall that a feed-forward network is represented in MATLAB as an array of layers. This makes it easy to index into the layers of a network and change them.

    (2)To modify a preexisting network, you create a new layer

    (3)then index into the layer array that represents the network and overwrite the chosen layer with the newly created layer.

    (4)As with any indexed assignment in MATLAB, you can combine these steps into one line.

    Modifying Network Layers: (2/2) Modify layers of a pretrained network

    Modify Network Layers

    Instructions are in the task pane to the left. Complete and submit each task one at a time.

    This code imports AlexNet and extracts its layers.

    anet = alexnet;

    layers = anet.Layers

    Task 1

    Create new layer

    fc = fullyConnectedLayer(12)

    Task 2

    Replace 23rd layer

    layers(23) = fc

    Task 3

    Replace last layer

    layers(end) = classificationLayer

    Setting Training Options

    Set Training Options

    Instructions are in the task pane to the left. Complete and submit each task one at a time.

    Task 1

    Set default options

    opts = trainingOptions('sgdm');

    Task 2

    Set initial learning rate

    opts = trainingOptions('sgdm','InitialLearnRate',0.001);

    Training the Network: (4/4) Summary example

    Transfer Learning Example Script

    The code below implements transfer learning for the flower species example in this chapter. It is available as the script trainflowers.mlx in the course example files. You can download the course example files from the help menu in the top-right corner. You can find more information on this dataset at the 17 Category Flower Dataset page from the University of Oxford. 

    Note that this example can take some time to run if you run it on a computer that does not have a supported GPU.

    Get training images

    flower_ds = imageDatastore('Flowers','IncludeSubfolders',true,'LabelSource','foldernames');[trainImgs,testImgs] = splitEachLabel(flower_ds,0.6);numClasses = numel(categories(flower_ds.Labels));

    Create a network by modifying AlexNet

    net = alexnet;layers = net.Layers;layers(end-2) = fullyConnectedLayer(numClasses);layers(end) = classificationLayer;

    Set training algorithm options

    options = trainingOptions('sgdm','InitialLearnRate', 0.001);

    Perform training

    [flowernet,info] = trainNetwork(trainImgs, layers, options);

    Use trained network to classify test images

    testpreds = classify(flowernet,testImgs);

    4.7 Evaluating Performance: (1/3) Evaluating training and test performance

    Evaluate Performance

    Instructions are in the task pane to the left. Complete and submit each task one at a time.

    This code loads the training information of flowernet.

    load pathToImages

    load trainedFlowerNetwork flowernet info

    Task 1

    Plot training loss

    plot(info.TrainingLoss)

    This code creates a datastore of the flower images.

    dsflowers = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames');

    [trainImgs,testImgs] = splitEachLabel(dsflowers,0.98);

    Task 2

    Classify images

    flwrPreds = classify(flowernet,testImgs)

    Evaluating Performance: (2/3) Investigating test performance

    Investigate test performance

    Instructions are in the task pane to the left. Complete and submit each task one at a time.

    This code sets up the Workspace for this activity.

    load pathToImages.mat

    pathToImages

    flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames');

    [trainImgs,testImgs] = splitEachLabel(flwrds,0.98);

    load trainedFlowerNetwork flwrPreds

    Task 1

    Extract labels

    flwrActual = testImgs.Labels

    Task 2

    Count correct

    numCorrect = nnz(flwrPreds == flwrActual)

    Task 3

    Calculate fraction correct

    fracCorrect = numCorrect/numel(flwrPreds)

    Task 4

    Display confusion matrix

    confusionchart(testImgs.Labels,flwrPreds)

    Evaluating Performance: (3/3) Improving performance

    MATLAB Course

    Transfer Learning Summary

    Transfer Learning Function Summary

    Create a network

    FunctionDescription

    alexnetLoad pretrained network “AlexNet”

    supported networksView list of available pretrained networks

    fullyConnectedLayerCreate new fully connected network layer

    classificationLayerCreate new output layer for a classification network

    Get training images

    FunctionDescription

    imageDatastoreCreate datastore reference to image files

    augmentedImageDatastorePreprocess a collection of image files

    splitEachLabelDivide datastore into multiple datastores

    Set training algorithm options

    FunctionDescription

    trainingOptionsCreate variable containing training algorithm options

    Perform training

    FunctionDescription

    trainNetworkPerform training

    Use trained network to perform classifications

    FunctionDescription

    classifyObtain trained network's classifications of input images

    Evaluate trained network

    FunctionDescription

    nnzCount non-zero elements in an array

    confusionchartCalculate confusion matrix

    heatmapVisualize confusion matrix as a heatmap

    相关文章

      网友评论

          本文标题:MATLAB深度学习工具箱使用教程

          本文链接:https://www.haomeiwen.com/subject/totslqtx.html