美文网首页
OC类底层探索 — 方法缓存cache_t

OC类底层探索 — 方法缓存cache_t

作者: Dezi | 来源:发表于2020-05-12 16:54 被阅读0次

    前言

    从之前对类的探索,还剩下类对象 objc_class 的成员 cache 没有探索。看名字我们知道它是缓存,下面我们通过源码研究一下。

    struct objc_class : objc_object {
        // Class ISA; // 8
        Class superclass; // 8
        cache_t cache;    // 16 不是8         // formerly cache pointer and vtable
        class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
    
        class_rw_t *data() { 
            return bits.data();
        }
    
        // ...省略...
    

    一、cache_t 源码分析

    1. cache_t 基本结构

    struct cache_t {
        struct bucket_t *_buckets; // 8
        mask_t _mask;  // 4
        mask_t _occupied; // 4
    
    public:
        struct bucket_t *buckets();
        mask_t mask();
        mask_t occupied();
        void incrementOccupied();
        void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
        void initializeToEmpty();
    
        mask_t capacity();
        bool isConstantEmptyCache();
        bool canBeFreed();
    
        static size_t bytesForCapacity(uint32_t cap);
        static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);
    
        void expand();
        void reallocate(mask_t oldCapacity, mask_t newCapacity);
        struct bucket_t * find(cache_key_t key, id receiver);
    
        static void bad_cache(id receiver, SEL sel, Class isa) __attribute__((noreturn));
    };
    
    1. _buckets:数组,是bucket_t结构体的数组,bucket_t是用来存放方法的SEL内存地址和IMP的
    2. _mask:的大小是数组大小 - 1,用作掩码。(因为这里维护的数组大小都是2的整数次幂,所以_mask的二进制位000011, 000111, 001111)刚好可以用作hash取余数的掩码。刚好保证相与后不超过缓存大小。
    3. _occupied:当前已缓存的方法数,缓存数组中已使用的容量。

    2. bucket_t 结构

    struct bucket_t {
    private:
        // IMP-first is better for arm64e ptrauth and no worse for arm64.
        // SEL-first is better for armv7* and i386 and x86_64.
    #if __arm64__
        MethodCacheIMP _imp;
        cache_key_t _key;
    #else
        cache_key_t _key;
        MethodCacheIMP _imp;
    #endif
    
    public:
        inline cache_key_t key() const { return _key; }
        inline IMP imp() const { return (IMP)_imp; }
        inline void setKey(cache_key_t newKey) { _key = newKey; }
        inline void setImp(IMP newImp) { _imp = newImp; }
    
        void set(cache_key_t newKey, IMP newImp);
    };
    

    _imp:函数调用地址,方法实现IMP
    cache_key_t _key: _key实际就是sel强转(cache_key_t)sel,把sel方法名字转为十进制。

    通过观察 arm64 中,存的是MethodCacheIMP _impcache_key_t _key,这些属性证明缓存的就是方法。

    二、cache_t 缓存方法的流程

    1. 缓存入口

    点击cache_t中的public函数,会进入到objc-cache.mm源码中,在最上边会看到这样一段说明:

    /* 
     *Cache readers (PC-checked by collecting_in_critical())
     * objc_msgSend*
     * cache_getImp
     * 
     * Cache writers (hold cacheUpdateLock while reading or writing; not PC-checked)
     * cache_fill         (acquires lock)
     * cache_expand       (only called from cache_fill)
     * cache_create       (only called from cache_expand)
     * bcopy               (only called from instrumented cache_expand)
     * flush_caches        (acquires lock)
     * cache_flush        (only called from cache_fill and flush_caches)
     * cache_collect_free (only called from cache_expand and cache_flush)
    */
    

    缓存的读写,以及需要调用的方法顺序,那么我们先从写入 Cache writers 来看。
    首先就是 cache_fill

    2. cache_fill

    查看 cache_fill 源码,我们发现主要是调用了 cache_fill_nolock 方法:

    void cache_fill(Class cls, SEL sel, IMP imp, id receiver)
    {
    #if !DEBUG_TASK_THREADS
        mutex_locker_t lock(cacheUpdateLock);
        cache_fill_nolock(cls, sel, imp, receiver);
    #else
        _collecting_in_critical();
        return;
    #endif
    }
    

    3. cache_fill_nolock

    static void cache_fill_nolock(Class cls, SEL sel, IMP imp, id receiver)
    {
        cacheUpdateLock.assertLocked();
    
        // Never cache before +initialize is done
        // 没有初始化的缓存直接return
        if (!cls->isInitialized()) return;
        
        // Make sure the entry wasn't added to the cache by some other thread 
        // before we grabbed the cacheUpdateLock.
        if (cache_getImp(cls, sel)) return;
    
        cache_t *cache = getCache(cls);
        cache_key_t key = getKey(sel);
    
        // Use the cache as-is if it is less than 3/4 full
        mask_t newOccupied = cache->occupied() + 1;
        mask_t capacity = cache->capacity();
        if (cache->isConstantEmptyCache()) {
            // Cache is read-only. Replace it.
            cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
        }
        else if (newOccupied <= capacity / 4 * 3) {
            // Cache is less than 3/4 full. Use it as-is.
        }
        else {
            // Cache is too full. Expand it.
            cache->expand();
        }
    
        // Scan for the first unused slot and insert there.
        // There is guaranteed to be an empty slot because the 
        // minimum size is 4 and we resized at 3/4 full.
        bucket_t *bucket = cache->find(key, receiver);
        if (bucket->key() == 0) cache->incrementOccupied();
        bucket->set(key, imp);
    }
    
    • cache_getImp

    if (cache_getImp(cls, sel)) return;
    判断当前cls下的sel是否已经被缓存了,如果已经有缓存直接返回。确保缓存没有被其他线程写入,才能进行接下来的填充缓存的操作。

    • getCache

    cache_t *cache = getCache(cls);
    获取当前类的缓存,内部实现如下:

    cache_t *getCache(Class cls) 
    {
        assert(cls);
        return &cls->cache;
    }
    
    • getKey

    cache_key_t key = getKey(sel);
    通过sel方法获取缓存key,其实就是一个类型的强转,内部实现如下:

    cache_key_t getKey(SEL sel) 
    {
        assert(sel);
        return (cache_key_t)sel;
    }
    
    • mask_t newOccupied = cache->occupied() + 1;

    在已占用内存occupied的基础上 +1,得到新的缓存占用大小newOccupied

    • mask_t capacity = cache->capacity();

    获取当前hash表的容量,也就是总容量大小。

    • cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);

    判断缓存是否为空;如果缓存为空,重新开辟空间,最少4字节

    if (cache->isConstantEmptyCache()) {
        cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
    }
    
    // 1左移两位,也就是4字节
    enum {
        INIT_CACHE_SIZE_LOG2 = 2,
        INIT_CACHE_SIZE      = (1 << INIT_CACHE_SIZE_LOG2)
    };
    

    reallocate:重新开辟缓存空间

    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
    {
        // 是否需要释放旧缓存
        bool freeOld = canBeFreed();
    
        bucket_t *oldBuckets = buckets(); // 旧缓存
        bucket_t *newBuckets = allocateBuckets(newCapacity); // 初始化新的缓存
    
        // Cache's old contents are not propagated. 
        // This is thought to save cache memory at the cost of extra cache fills.
        // fixme re-measure this
    
        assert(newCapacity > 0);
        assert((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
    
        // 设置新的buckets和mask
        setBucketsAndMask(newBuckets, newCapacity - 1);
        
        // 释放旧缓存
        if (freeOld) {
            cache_collect_free(oldBuckets, oldCapacity);
            cache_collect(false);
        }
    }
    
    • cache->expand();

    判断newOccupied大于总容量的3/4,走expand()进行缓存扩容,小于等于3/4仍使用现有缓存空间。

    else if (newOccupied <= capacity / 4 * 3) {
        // Cache is less than 3/4 full. Use it as-is.
    } else {
        cache->expand();
    }
    

    expand:扩容

    void cache_t::expand()
    {
        cacheUpdateLock.assertLocked();
        // 旧缓存空间
        uint32_t oldCapacity = capacity(); 
        // 扩容为二倍旧的缓存空间
        uint32_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE; 
    
        if ((uint32_t)(mask_t)newCapacity != newCapacity) {
            // mask overflow - can't grow further
            // fixme this wastes one bit of mask
            newCapacity = oldCapacity;
        }
        // 重新开辟内存
        reallocate(oldCapacity, newCapacity);
    }
    
    • 最后把新调用的方法添加到缓存中,并存储keyimp
    // Scan for the first unused slot and insert there.
    // There is guaranteed to be an empty slot because the 
    // minimum size is 4 and we resized at 3/4 full.
    bucket_t *bucket = cache->find(key, receiver); // 找到桶
    if (bucket->key() == 0) cache->incrementOccupied(); // 如果key==0则说明之前未存储过这个key,占用空间+1
    bucket->set(key, imp); // 存储 key和imp 到bucket
    

    3. ·find() 查找缓存key

    bucket_t * cache_t::find(cache_key_t k, id receiver)
    {
        assert(k != 0);
    
        bucket_t *b = buckets();
        mask_t m = mask();
        // 通过cache_hash函数【begin  = k & m】计算出key值 k 对应的 index值 begin,用来记录查询起始索引
        mask_t begin = cache_hash(k, m);
        // begin 赋值给 i,用于切换索引
        mask_t i = begin;
        do {
            if (b[i].key() == 0  ||  b[i].key() == k) {
                //用这个i从散列表取值,如果取出来的bucket_t的 key = k,则查询成功,返回该bucket_t,
                //如果key = 0,说明在索引i的位置上还没有缓存过方法,同样需要返回该bucket_t,用于中止缓存查询。
                return &b[i];
            }
        } while ((i = cache_next(i, m)) != begin);
        // 这一步其实相当于 i = i-1,回到上面do循环里面,相当于查找散列表上一个单元格里面的元素,再次进行key值 k的比较,
        //当i=0时,也就i指向散列表最首个元素索引的时候重新将mask赋值给i,使其指向散列表最后一个元素,重新开始反向遍历散列表,
        //其实就相当于绕圈,把散列表头尾连起来,不就是一个圈嘛,从begin值开始,递减索引值,当走过一圈之后,必然会重新回到begin值,
        //如果此时还没有找到key对应的bucket_t,或者是空的bucket_t,则循环结束,说明查找失败,调用bad_cache方法。
     
        // hack
        Class cls = (Class)((uintptr_t)this - offsetof(objc_class, cache));
        cache_t::bad_cache(receiver, (SEL)k, cls);
    }
    
    • mask_t begin = cache_hash(s, m);
    static inline mask_t cache_hash(cache_key_t key, mask_t mask) 
    {
        return (mask_t)(key & mask);
    }
    

    cache_hash(s, m)hash 算法,bucket_t里边缓存的实际上就是一个hash表,可以看做是 key:value 的结构,begin是查询的起始索引。

    • do...white

    闭环查找,如果取出来的 key = k,则查询成功,返回该bucket_t
    如果 key = 0,说明在索引 i 的位置上还没有缓存过方法,同样需要返回该 bucket_t,用于中止缓存查询。

    do {
        if (b[i].key() == 0  ||  b[i].key() == k) {
            return &b[i];
        }
    } while ((i = cache_next(i, m)) != begin);
    
    static inline mask_t cache_next(mask_t i, mask_t mask) {
        return i ? i-1 : mask;
    }
    

    三、总结

    1. 实例方法缓存在类中,类方法缓存在元类中
    2. 方法缓存是以 hash表 的形式存储
    3. cache_t 当前使用缓存空间在大于3/4时会进行扩容,扩容时会抹除旧的 buckets 创建新的二倍当前空间,然后把最近一次的临界方法缓存进来
    4. 缓存方法是为了最大化提高程序的执行效率

    相关文章

      网友评论

          本文标题:OC类底层探索 — 方法缓存cache_t

          本文链接:https://www.haomeiwen.com/subject/truynhtx.html