美文网首页
PTA刷题总结-Part3.5 图专题

PTA刷题总结-Part3.5 图专题

作者: 苏wisdom | 来源:发表于2020-04-12 16:13 被阅读0次

    1 图的基本概念

    图是由两个集合构成 G=(V,E)

    • 非空但有限的定点集合V
    • 可以为空的边的集合E

    相关术语

    • 无向图
    • 有向图
    • 简单图
    • 邻接点
    • 路径,简单路径,回路,无环图
    • 无向完全图
    • 有向完全图
    • 顶点的度、入度、出度
    • 稠密图、稀疏图
    • 权、网图
    • 子图
    • 连通图、连通分量
    • 强连通图、强连通分量
    • 生成树
    • 生成森林

    2 图的存储结构

    2.1 邻接矩阵

    输入数据

    6 11
    3 4 70
    1 2 1
    5 4 50
    2 6 50
    5 6 60
    1 3 70
    4 6 60
    3 6 80
    5 1 100
    2 4 60
    5 2 80
    A b c d e f
    

    c语言实现

    #include <stdio.h>
    #include <stdlib.h>
    
    #define MaxVertexNum 100
    #define INFINITY 65535
    typedef int Vertex; // 顶点下标
    typedef int WeightType;
    typedef char DataType;
    
    // 图
    typedef struct GNode *PtrToGNode;
    struct GNode{
        int Nv;// 顶点数
        int Ne;// 边数
        WeightType G[MaxVertexNum][MaxVertexNum];
        DataType Data[MaxVertexNum];
    };
    typedef PtrToGNode MGraph;
    
    // 边
    typedef struct ENode *PtrToEnode;
    struct ENode{
        Vertex V1,V2;
        WeightType Weight;
    };
    typedef PtrToEnode Edge;
    
    // 初始化
    MGraph CreateGraph(int VertexNum){
        MGraph Graph = (MGraph)malloc(sizeof(struct GNode));
        Graph->Nv = VertexNum;
        Graph->Ne = 0;
        
        for (Vertex V=0; V<Graph->Nv;V++){
            for (Vertex W=0; W<Graph->Nv;W++){
                Graph->G[V][W] = INFINITY;
            }
        }
        return Graph;
    }
    
    
    void InsertEdge(MGraph Graph, Edge E){
        Graph->G[E->V1][E->V2] = E->Weight;
        // 无向图
        Graph->G[E->V2][E->V1] = E->Weight;
    }
    
    MGraph BuildGraph(){
        MGraph Graph;
        int Nv=0;
        scanf("%d", &Nv);
        Graph = CreateGraph(Nv);
        
        scanf("%d", &(Graph->Ne));
        if (Graph->Ne != 0){
            Edge E = (Edge)malloc(sizeof(struct ENode));
            for (int i=0; i<Graph->Ne; i++){
                scanf("%d %d %d", &(E->V1), &(E->V2), &(E->Weight));
                InsertEdge(Graph, E);
            }
        }
        
        for (Vertex V=0; V<Graph->Nv; V++){
            scanf(" %c", &(Graph->Data[V]));
        }
        
        return Graph;
    }
    
    int main(){
        MGraph Graph = BuildGraph();
        printf("Nv = %d\n", Graph->Nv);
        printf("Ne = %d\n", Graph->Ne);
        
        for (Vertex V=0; V<Graph->Nv; V++){
            printf(" %c", Graph->Data[V]);
        }
    }
    
    

    2.1 邻接表

    输入数据

    6 11
    3 4 70
    1 2 1
    5 4 50
    2 6 50
    5 6 60
    1 3 70
    4 6 60
    3 6 80
    5 1 100
    2 4 60
    5 2 80
    A b c d e f
    

    c语言实现

    #include <stdio.h>
    #include <stdlib.h>
    
    #define MaxVertexNum 100
    #define INFINITY 65535
    typedef int Vertex; // 顶点下标
    typedef int WeightType;
    typedef char DataType;
    
    // 边
    typedef struct ENode *PtrToENode;
    struct ENode{
        Vertex V1, V2;
        WeightType Weight;
    };
    typedef PtrToENode Edge;
    
    // 邻接点
    typedef struct AdjVNode *PtrToAdjVNode;
    struct AdjVNode{
        Vertex AdjV; // 邻接点下标
        WeightType Weight;
        PtrToAdjVNode Next;
    };
    
    // 顶点表头节点
    typedef struct Vnode{
        PtrToAdjVNode FirstEdge;
        DataType Data;
    } AdjList[MaxVertexNum];
    
    // 图
    typedef struct GNode *PtrToGNode;
    struct GNode{
        int Nv;
        int Ne;
        AdjList G;
    };
    typedef PtrToGNode LGraph;
    
    // 初始化
    LGraph CreateGraph(int VertexNum){
        LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
        Graph->Nv = VertexNum;
        Graph->Ne = 0;
        
        for(Vertex V=0; V<Graph->Nv; V++){
            Graph->G[V].FirstEdge = NULL;
        }
        
        return Graph;
    }
    
    
    void InsertEdge(LGraph Graph, Edge E){
        PtrToAdjVNode NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
        NewNode->AdjV = E->V2;
        NewNode->Weight = E->Weight;
        NewNode->Next = Graph->G[E->V1].FirstEdge;
        Graph->G[E->V1].FirstEdge = NewNode;
        
        // 无向图
        NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
        NewNode->AdjV = E->V1;
        NewNode->Weight = E->Weight;
        NewNode->Next = Graph->G[E->V2].FirstEdge;
        Graph->G[E->V2].FirstEdge = NewNode;
    }
    
    LGraph BuildGraph(){
        LGraph Graph;
        int Nv=0;
        scanf("%d", &Nv);
        Graph = CreateGraph(Nv);
        
        scanf("%d", &(Graph->Ne));
        if (Graph->Ne != 0){
            Edge E = (Edge)malloc(sizeof(struct ENode));
            for (int i=0; i<Graph->Ne;i++){
                scanf("%d %d %d", &(E->V1), &(E->V2), &(E->Weight));
                InsertEdge(Graph, E);
            }
        }
        
        for (Vertex V=0;V<Graph->Nv;V++){
            scanf(" %c", &(Graph->G[V].Data));
        }
        
        return Graph;
    }
    
    int main(){
        LGraph Graph = BuildGraph();
        printf("Nv = %d\n", Graph->Nv);
        printf("Ne = %d\n", Graph->Ne);
        printf("Node = %c\n", Graph->G[0].Data);
    }
    
    

    使用Java做题的时候,邻接表的结构可以简单地写成
    Map<T, Set<T>> = new HashMap<Integer, HashSet<Integer>>();

    3 遍历

    3.1 DFS深度优先搜索

    06-图1 列出连通集 (25分)

    #include <stdio.h>
    #include <stdlib.h>
    #include <queue>
    using namespace std;
    
    #define MaxVertexNum 20
    #define INFINITY 65535
    typedef int Vertex; // 顶点下标
    typedef int WeightType;
    typedef char DataType;
    
    // 边
    typedef struct ENode *PtrToENode;
    struct ENode{
        Vertex V1, V2;
    };
    typedef PtrToENode Edge;
    
    // 邻接点
    typedef struct AdjVNode *PtrToAdjVNode;
    struct AdjVNode{
        Vertex AdjV; // 邻接点下标
        PtrToAdjVNode Next;
    };
    
    // 顶点表头节点
    typedef struct Vnode{
        PtrToAdjVNode FirstEdge;
        DataType Data;
    } AdjList[MaxVertexNum];
    
    // 图
    typedef struct GNode *PtrToGNode;
    struct GNode{
        int Nv;
        int Ne;
        AdjList G;
    };
    typedef PtrToGNode LGraph;
    
    bool visited[MaxVertexNum];
    // 初始化
    LGraph CreateGraph(int VertexNum){
        LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
        Graph->Nv = VertexNum;
        Graph->Ne = 0;
        
        for(Vertex V=0; V<Graph->Nv; V++){
            Graph->G[V].FirstEdge = NULL;
            visited[V] = false;
        }
        
        return Graph;
    }
    
    
    void InsertEdge(LGraph Graph, Edge E){
        PtrToAdjVNode NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
        NewNode->AdjV = E->V2;
        NewNode->Next = Graph->G[E->V1].FirstEdge;
        Graph->G[E->V1].FirstEdge = NewNode;
        
        
        // 无向图
        NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
        NewNode->AdjV = E->V1;
        NewNode->Next = Graph->G[E->V2].FirstEdge;
        Graph->G[E->V2].FirstEdge = NewNode;
    }
    
    LGraph BuildGraph(){
        LGraph Graph;
        int Nv=0;
        scanf("%d", &Nv);
        Graph = CreateGraph(Nv);
        
        scanf("%d", &(Graph->Ne));
        if (Graph->Ne != 0){
            Edge E = (Edge)malloc(sizeof(struct ENode));
            for (int i=0; i<Graph->Ne;i++){
                scanf("%d %d", &(E->V1), &(E->V2));
                InsertEdge(Graph, E);
            }
        }
        
        
        return Graph;
    }
    
    bool IsEdge(LGraph Graph, Vertex V, Vertex W){
        bool ans = false;
        PtrToAdjVNode p =Graph->G[V].FirstEdge;
        while (p){
            if (p->AdjV == W){
                ans = true;
                break;
            }
            p = p->Next;
        }
        return ans;
    }
    
    void DFS(LGraph Graph, Vertex V){
        printf("%d ", V);
        visited[V] = true;
        for (Vertex W=0;W<Graph->Nv;W++){
            if (V!=W && !visited[W] && IsEdge(Graph,V, W)){
                DFS(Graph, W);
            }
        }
    }
    
    void ClearVisited(int VertexNum){
        for (int i=0;i<VertexNum;i++){
            visited[i] = false;
        }
    }
    
    void BFS(LGraph Graph, Vertex V){
        queue<Vertex> Q;
        Q.push(V);
        printf("%d ", V);
        visited[V] = true;
        while (!Q.empty()){
            Vertex T = Q.front();
            Q.pop();
            for (Vertex W=0;W<Graph->Nv;W++){
                if (T!=W && !visited[W] && IsEdge(Graph,T, W)){
                    printf("%d ", W);
                    visited[W] = true;
                    Q.push(W);
                }
            }
        }
    }
    int main(){
        LGraph Graph = BuildGraph();
        // DFS
        for (Vertex V=0;V<Graph->Nv;V++){
            if (!visited[V]){
                printf("{ ");
                DFS(Graph,V);
                printf("}\n");
            }
        }
        ClearVisited(Graph->Nv);
        for (Vertex V=0;V<Graph->Nv;V++){
            if (!visited[V]){
                printf("{ ");
                BFS(Graph,V);
                printf("}\n");
            }
        }
    }
    
    

    当然不是所有使用到深度优先搜索的题目都需要构造树结构的。很多题问你求出“所有可能”的结果时,都是可以使用DFS的。

    3.2 BFS广度优先搜索

    什么时候应该使用BFS

    • 层级遍历
      • 层级bfs,二叉树不用标记visited,但是图需要
      • 出队列时放入数组
    • 由点及面
      • 普通bfs,标记visited
      • 入队列时标记visited
    • 拓扑排序
      • 普通bfs,入度数组代替标记visited
      • 节点可以在入栈/出栈时抠出
    • 最短路径
      • 层级bfs,标记visited
      • 矩阵表示的点要用层级,返回int dist每层累加
      • 邻接表表示的点使用map直接保存到起点的最短路径
    • 非递归的方式找到所有方案

    邻接链表的存储

    Map<T, Set<T>> = new HashMap<Integer, HashSet<Integer>>();

    什么时候处理数据

    • 出队列时操作?
      • (重要)层级遍历一定要在出栈时放入数组
      • 拓扑排序的节点
    • 入队列时操作?
      • (重要)标记访问节点一定要在入栈时就操作
      • 拓扑排序的节点

    时间复杂度
    O(N+M)

    题目:06-图3 六度空间 (30分)

    #include <stdio.h>
    #include <stdlib.h>
    #include <queue>
    using namespace std;
    #define MaxVertexNum 1001
    #define INFINITY 65535
    typedef int Vertex; // 顶点下标
    
    // 边
    typedef struct ENode *PtrToENode;
    struct ENode{
        Vertex V1, V2;
    };
    typedef PtrToENode Edge;
    
    // 邻接点
    typedef struct AdjVNode *PtrToAdjVNode;
    struct AdjVNode{
        Vertex AdjV; // 邻接点下标
        PtrToAdjVNode Next;
    };
    
    // 顶点表头节点
    typedef struct Vnode{
        PtrToAdjVNode FirstEdge;
    } AdjList[MaxVertexNum];
    
    // 图
    typedef struct GNode *PtrToGNode;
    struct GNode{
        int Nv;
        int Ne;
        AdjList G;
    };
    typedef PtrToGNode LGraph;
    
    bool visited[MaxVertexNum];
    // 初始化
    LGraph CreateGraph(int VertexNum){
        LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
        Graph->Nv = VertexNum;
        Graph->Ne = 0;
        
        for(Vertex V=1; V<Graph->Nv; V++){
            Graph->G[V].FirstEdge = NULL;
        }
        
        return Graph;
    }
    
    
    void InsertEdge(LGraph Graph, Edge E){
        PtrToAdjVNode NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
        NewNode->AdjV = E->V2;
        NewNode->Next = Graph->G[E->V1].FirstEdge;
        Graph->G[E->V1].FirstEdge = NewNode;
        
        // 无向图
        NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
        NewNode->AdjV = E->V1;
        NewNode->Next = Graph->G[E->V2].FirstEdge;
        Graph->G[E->V2].FirstEdge = NewNode;
    }
    
    LGraph BuildGraph(){
        LGraph Graph;
        int Nv=0;
        scanf("%d", &Nv);
        Graph = CreateGraph(Nv);
        
        scanf("%d", &(Graph->Ne));
        if (Graph->Ne != 0){
            Edge E = (Edge)malloc(sizeof(struct ENode));
            for (int i=1; i<=Graph->Ne;i++){
                scanf("%d %d", &(E->V1), &(E->V2));
                InsertEdge(Graph, E);
            }
        }
        return Graph;
    }
    
    void ClearVisited(LGraph Graph){
        for (int i=1; i<=Graph->Nv;i++){
            visited[i] = false;
        }
    }
    
    int BFS(LGraph Graph, Vertex V){
        int ans = 1;
        int level = 0;
        Vertex end=V; // end 当前这一层访问的最后一个节点
        Vertex tail=0;// tail 每次进入队列的最后一个节点,也是x当前这一层的下一层
        visited[V] = true;
        queue<Vertex> Q;
        Q.push(V);
        while (!Q.empty()){
            Vertex Temp = Q.front();
            Q.pop();
            for (PtrToAdjVNode p = Graph->G[Temp].FirstEdge; p ; p = p->Next){
                if (!visited[p->AdjV]){
                    visited[p->AdjV] = true;
                    Q.push(p->AdjV);
                    ans++;
                    tail = p->AdjV;
                }
            }
            if (Temp == end){
                level++;
                // 向外推了一层
                end = tail;
            }
            if (level == 6){
                break;
            }
        }
        return ans;
    }
    
    int main(){
        LGraph Graph = BuildGraph();
        for (int i=1; i<=Graph->Nv;i++){
            ClearVisited(Graph);
            int count = BFS(Graph, i);
            double ans = (double)count/(double)Graph->Nv;
            printf("%d: %.2lf%%\n", i, ans*100);
        }
    }
    
    

    subsets

    public class Solution {
        /**
         * @param nums: A set of numbers
         * @return: A list of lists
         */
        public List<List<Integer>> subsets(int[] nums) {
            if (nums == null) {
                return null;
            }
            Arrays.sort(nums);
            int n = nums.length;
             List<List<Integer>> results = new LinkedList<>();
             Queue<List<Integer>> queue = new LinkedList<>();
             queue.offer(new LinkedList<>());
             while (!queue.isEmpty()) {
                 List<Integer> curr = queue.poll();
                 results.add(curr);
                 for (int i = 0; i< n; i++) {
                     if (curr.size() == 0 || curr.get(curr.size() - 1) < nums[i]) {
                         List<Integer> intList = new LinkedList<>(curr);
                         intList.add(nums[i]);
                         queue.offer(intList);
                     }
                 }
             }
             return results;
        }
    }
    

    4 最短路径

    不考虑负值圈。

    4.1 单源无权最短路

    使用BFS,按路径长度递增的次序产生找到各个顶点。

    4.2 单源有权最短路-Dijkstra

    按路径长度递增的次序产生最短路径。

    4.3 多源最短路-Floyd

    • 要求出每对顶点之间的最短距离
    • 稠密图,邻接矩阵
    • 动态规划

    07-图4 哈利·波特的考试 (25分)

    #include <stdio.h>
    #include <stdlib.h>
    
    #define MaxVertexNum 101
    #define INFINITY 65535
    typedef int Vertex; // 顶点下标
    typedef int WeightType;
    
    // 图
    typedef struct GNode *PtrToGNode;
    struct GNode{
        int Nv;// 顶点数
        int Ne;// 边数
        WeightType G[MaxVertexNum][MaxVertexNum];
    };
    typedef PtrToGNode MGraph;
    
    // 边
    typedef struct ENode *PtrToEnode;
    struct ENode{
        Vertex V1,V2;
        WeightType Weight;
    };
    typedef PtrToEnode Edge;
    
    // 初始化
    MGraph CreateGraph(int VertexNum){
        MGraph Graph = (MGraph)malloc(sizeof(struct GNode));
        Graph->Nv = VertexNum;
        Graph->Ne = 0;
        
        for (Vertex V=0; V<Graph->Nv;V++){
            for (Vertex W=0; W<Graph->Nv;W++){
                Graph->G[V][W] = INFINITY;
            }
        }
        return Graph;
    }
    
    
    void InsertEdge(MGraph Graph, Edge E){
        Graph->G[E->V1][E->V2] = E->Weight;
        // 无向图
        Graph->G[E->V2][E->V1] = E->Weight;
    }
    
    MGraph BuildGraph(){
        MGraph Graph;
        int Nv=0;
        scanf("%d", &Nv);
        Graph = CreateGraph(Nv);
        
        scanf("%d", &(Graph->Ne));
        if (Graph->Ne != 0){
            Edge E = (Edge)malloc(sizeof(struct ENode));
            for (int i=0; i<Graph->Ne; i++){
                scanf("%d %d %d", &(E->V1), &(E->V2), &(E->Weight));
                E->V1--;
                E->V2--;
                InsertEdge(Graph, E);
            }
        }
        
        return Graph;
    }
    
    void Floyd(MGraph Graph, WeightType D[][MaxVertexNum]){
        for (Vertex k =0; k<Graph->Nv;k++){
            for (Vertex i=0;i<Graph->Nv;i++){
                for (Vertex j=0; j<Graph->Nv;j++){
                    if (D[i][k] + D[k][j] < D[i][j]){
                        D[i][j] =D[i][k] + D[k][j];
                    }
                }
            }
        }
    }
    
    void FindAnimal(MGraph Graph){
        Vertex minI=0;
        int minw = INFINITY;
        for (Vertex i=0;i<Graph->Nv;i++){
            int maxrow = -1;
            for (Vertex j=0; j<Graph->Nv;j++){
                if (i!=j && Graph->G[i][j] > maxrow){
                    maxrow =Graph->G[i][j];
                }
            }
            if (maxrow < minw){
                minI = i;
                minw = maxrow;
            } else if (maxrow == INFINITY) {
                printf("0\n");
                return;
            }
        }
        printf("%d %d\n", minI+1, minw);
    }
    int main(){
        MGraph Graph = BuildGraph();
        Floyd(Graph, Graph->G);
        FindAnimal(Graph);
    }
    

    5 最小生成树

    5.1 稠密图-Prim

    • 从顶点出发

    5.2 稀疏图-Kruskal

    • 把森林合并成一颗树
    • 从边出发

    6 拓扑排序

    • 使用队列存储入度为0的节点

    相关文章

      网友评论

          本文标题:PTA刷题总结-Part3.5 图专题

          本文链接:https://www.haomeiwen.com/subject/tsdymhtx.html