1 图的基本概念
图是由两个集合构成 G=(V,E)
- 非空但有限的定点集合V
- 可以为空的边的集合E
相关术语
- 无向图
- 有向图
- 简单图
- 邻接点
- 路径,简单路径,回路,无环图
- 无向完全图
- 有向完全图
- 顶点的度、入度、出度
- 稠密图、稀疏图
- 权、网图
- 子图
- 连通图、连通分量
- 强连通图、强连通分量
- 生成树
- 生成森林
2 图的存储结构
2.1 邻接矩阵
输入数据
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
A b c d e f
c语言实现
#include <stdio.h>
#include <stdlib.h>
#define MaxVertexNum 100
#define INFINITY 65535
typedef int Vertex; // 顶点下标
typedef int WeightType;
typedef char DataType;
// 图
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;// 顶点数
int Ne;// 边数
WeightType G[MaxVertexNum][MaxVertexNum];
DataType Data[MaxVertexNum];
};
typedef PtrToGNode MGraph;
// 边
typedef struct ENode *PtrToEnode;
struct ENode{
Vertex V1,V2;
WeightType Weight;
};
typedef PtrToEnode Edge;
// 初始化
MGraph CreateGraph(int VertexNum){
MGraph Graph = (MGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = 0;
for (Vertex V=0; V<Graph->Nv;V++){
for (Vertex W=0; W<Graph->Nv;W++){
Graph->G[V][W] = INFINITY;
}
}
return Graph;
}
void InsertEdge(MGraph Graph, Edge E){
Graph->G[E->V1][E->V2] = E->Weight;
// 无向图
Graph->G[E->V2][E->V1] = E->Weight;
}
MGraph BuildGraph(){
MGraph Graph;
int Nv=0;
scanf("%d", &Nv);
Graph = CreateGraph(Nv);
scanf("%d", &(Graph->Ne));
if (Graph->Ne != 0){
Edge E = (Edge)malloc(sizeof(struct ENode));
for (int i=0; i<Graph->Ne; i++){
scanf("%d %d %d", &(E->V1), &(E->V2), &(E->Weight));
InsertEdge(Graph, E);
}
}
for (Vertex V=0; V<Graph->Nv; V++){
scanf(" %c", &(Graph->Data[V]));
}
return Graph;
}
int main(){
MGraph Graph = BuildGraph();
printf("Nv = %d\n", Graph->Nv);
printf("Ne = %d\n", Graph->Ne);
for (Vertex V=0; V<Graph->Nv; V++){
printf(" %c", Graph->Data[V]);
}
}
2.1 邻接表
输入数据
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
A b c d e f
c语言实现
#include <stdio.h>
#include <stdlib.h>
#define MaxVertexNum 100
#define INFINITY 65535
typedef int Vertex; // 顶点下标
typedef int WeightType;
typedef char DataType;
// 边
typedef struct ENode *PtrToENode;
struct ENode{
Vertex V1, V2;
WeightType Weight;
};
typedef PtrToENode Edge;
// 邻接点
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; // 邻接点下标
WeightType Weight;
PtrToAdjVNode Next;
};
// 顶点表头节点
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
DataType Data;
} AdjList[MaxVertexNum];
// 图
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
// 初始化
LGraph CreateGraph(int VertexNum){
LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = 0;
for(Vertex V=0; V<Graph->Nv; V++){
Graph->G[V].FirstEdge = NULL;
}
return Graph;
}
void InsertEdge(LGraph Graph, Edge E){
PtrToAdjVNode NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V2;
NewNode->Weight = E->Weight;
NewNode->Next = Graph->G[E->V1].FirstEdge;
Graph->G[E->V1].FirstEdge = NewNode;
// 无向图
NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V1;
NewNode->Weight = E->Weight;
NewNode->Next = Graph->G[E->V2].FirstEdge;
Graph->G[E->V2].FirstEdge = NewNode;
}
LGraph BuildGraph(){
LGraph Graph;
int Nv=0;
scanf("%d", &Nv);
Graph = CreateGraph(Nv);
scanf("%d", &(Graph->Ne));
if (Graph->Ne != 0){
Edge E = (Edge)malloc(sizeof(struct ENode));
for (int i=0; i<Graph->Ne;i++){
scanf("%d %d %d", &(E->V1), &(E->V2), &(E->Weight));
InsertEdge(Graph, E);
}
}
for (Vertex V=0;V<Graph->Nv;V++){
scanf(" %c", &(Graph->G[V].Data));
}
return Graph;
}
int main(){
LGraph Graph = BuildGraph();
printf("Nv = %d\n", Graph->Nv);
printf("Ne = %d\n", Graph->Ne);
printf("Node = %c\n", Graph->G[0].Data);
}
使用Java做题的时候,邻接表的结构可以简单地写成
Map<T, Set<T>> = new HashMap<Integer, HashSet<Integer>>();
3 遍历
3.1 DFS深度优先搜索
06-图1 列出连通集 (25分)
#include <stdio.h>
#include <stdlib.h>
#include <queue>
using namespace std;
#define MaxVertexNum 20
#define INFINITY 65535
typedef int Vertex; // 顶点下标
typedef int WeightType;
typedef char DataType;
// 边
typedef struct ENode *PtrToENode;
struct ENode{
Vertex V1, V2;
};
typedef PtrToENode Edge;
// 邻接点
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; // 邻接点下标
PtrToAdjVNode Next;
};
// 顶点表头节点
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
DataType Data;
} AdjList[MaxVertexNum];
// 图
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
bool visited[MaxVertexNum];
// 初始化
LGraph CreateGraph(int VertexNum){
LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = 0;
for(Vertex V=0; V<Graph->Nv; V++){
Graph->G[V].FirstEdge = NULL;
visited[V] = false;
}
return Graph;
}
void InsertEdge(LGraph Graph, Edge E){
PtrToAdjVNode NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V2;
NewNode->Next = Graph->G[E->V1].FirstEdge;
Graph->G[E->V1].FirstEdge = NewNode;
// 无向图
NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V1;
NewNode->Next = Graph->G[E->V2].FirstEdge;
Graph->G[E->V2].FirstEdge = NewNode;
}
LGraph BuildGraph(){
LGraph Graph;
int Nv=0;
scanf("%d", &Nv);
Graph = CreateGraph(Nv);
scanf("%d", &(Graph->Ne));
if (Graph->Ne != 0){
Edge E = (Edge)malloc(sizeof(struct ENode));
for (int i=0; i<Graph->Ne;i++){
scanf("%d %d", &(E->V1), &(E->V2));
InsertEdge(Graph, E);
}
}
return Graph;
}
bool IsEdge(LGraph Graph, Vertex V, Vertex W){
bool ans = false;
PtrToAdjVNode p =Graph->G[V].FirstEdge;
while (p){
if (p->AdjV == W){
ans = true;
break;
}
p = p->Next;
}
return ans;
}
void DFS(LGraph Graph, Vertex V){
printf("%d ", V);
visited[V] = true;
for (Vertex W=0;W<Graph->Nv;W++){
if (V!=W && !visited[W] && IsEdge(Graph,V, W)){
DFS(Graph, W);
}
}
}
void ClearVisited(int VertexNum){
for (int i=0;i<VertexNum;i++){
visited[i] = false;
}
}
void BFS(LGraph Graph, Vertex V){
queue<Vertex> Q;
Q.push(V);
printf("%d ", V);
visited[V] = true;
while (!Q.empty()){
Vertex T = Q.front();
Q.pop();
for (Vertex W=0;W<Graph->Nv;W++){
if (T!=W && !visited[W] && IsEdge(Graph,T, W)){
printf("%d ", W);
visited[W] = true;
Q.push(W);
}
}
}
}
int main(){
LGraph Graph = BuildGraph();
// DFS
for (Vertex V=0;V<Graph->Nv;V++){
if (!visited[V]){
printf("{ ");
DFS(Graph,V);
printf("}\n");
}
}
ClearVisited(Graph->Nv);
for (Vertex V=0;V<Graph->Nv;V++){
if (!visited[V]){
printf("{ ");
BFS(Graph,V);
printf("}\n");
}
}
}
当然不是所有使用到深度优先搜索的题目都需要构造树结构的。很多题问你求出“所有可能”的结果时,都是可以使用DFS的。
3.2 BFS广度优先搜索
什么时候应该使用BFS
- 层级遍历
- 层级bfs,二叉树不用标记visited,但是图需要
- 出队列时放入数组
- 由点及面
- 普通bfs,标记visited
- 入队列时标记visited
- 拓扑排序
- 普通bfs,入度数组代替标记visited
- 节点可以在入栈/出栈时抠出
- 最短路径
- 层级bfs,标记visited
- 矩阵表示的点要用层级,返回
int dist
每层累加 - 邻接表表示的点使用map直接保存到起点的最短路径
- 非递归的方式找到所有方案
邻接链表的存储
Map<T, Set<T>> = new HashMap<Integer, HashSet<Integer>>();
什么时候处理数据
- 出队列时操作?
- (重要)层级遍历一定要在出栈时放入数组
- 拓扑排序的节点
- 入队列时操作?
- (重要)标记访问节点一定要在入栈时就操作
- 拓扑排序的节点
时间复杂度
O(N+M)
题目:06-图3 六度空间 (30分)
#include <stdio.h>
#include <stdlib.h>
#include <queue>
using namespace std;
#define MaxVertexNum 1001
#define INFINITY 65535
typedef int Vertex; // 顶点下标
// 边
typedef struct ENode *PtrToENode;
struct ENode{
Vertex V1, V2;
};
typedef PtrToENode Edge;
// 邻接点
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; // 邻接点下标
PtrToAdjVNode Next;
};
// 顶点表头节点
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
// 图
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
bool visited[MaxVertexNum];
// 初始化
LGraph CreateGraph(int VertexNum){
LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = 0;
for(Vertex V=1; V<Graph->Nv; V++){
Graph->G[V].FirstEdge = NULL;
}
return Graph;
}
void InsertEdge(LGraph Graph, Edge E){
PtrToAdjVNode NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V2;
NewNode->Next = Graph->G[E->V1].FirstEdge;
Graph->G[E->V1].FirstEdge = NewNode;
// 无向图
NewNode = (PtrToAdjVNode) malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V1;
NewNode->Next = Graph->G[E->V2].FirstEdge;
Graph->G[E->V2].FirstEdge = NewNode;
}
LGraph BuildGraph(){
LGraph Graph;
int Nv=0;
scanf("%d", &Nv);
Graph = CreateGraph(Nv);
scanf("%d", &(Graph->Ne));
if (Graph->Ne != 0){
Edge E = (Edge)malloc(sizeof(struct ENode));
for (int i=1; i<=Graph->Ne;i++){
scanf("%d %d", &(E->V1), &(E->V2));
InsertEdge(Graph, E);
}
}
return Graph;
}
void ClearVisited(LGraph Graph){
for (int i=1; i<=Graph->Nv;i++){
visited[i] = false;
}
}
int BFS(LGraph Graph, Vertex V){
int ans = 1;
int level = 0;
Vertex end=V; // end 当前这一层访问的最后一个节点
Vertex tail=0;// tail 每次进入队列的最后一个节点,也是x当前这一层的下一层
visited[V] = true;
queue<Vertex> Q;
Q.push(V);
while (!Q.empty()){
Vertex Temp = Q.front();
Q.pop();
for (PtrToAdjVNode p = Graph->G[Temp].FirstEdge; p ; p = p->Next){
if (!visited[p->AdjV]){
visited[p->AdjV] = true;
Q.push(p->AdjV);
ans++;
tail = p->AdjV;
}
}
if (Temp == end){
level++;
// 向外推了一层
end = tail;
}
if (level == 6){
break;
}
}
return ans;
}
int main(){
LGraph Graph = BuildGraph();
for (int i=1; i<=Graph->Nv;i++){
ClearVisited(Graph);
int count = BFS(Graph, i);
double ans = (double)count/(double)Graph->Nv;
printf("%d: %.2lf%%\n", i, ans*100);
}
}
public class Solution {
/**
* @param nums: A set of numbers
* @return: A list of lists
*/
public List<List<Integer>> subsets(int[] nums) {
if (nums == null) {
return null;
}
Arrays.sort(nums);
int n = nums.length;
List<List<Integer>> results = new LinkedList<>();
Queue<List<Integer>> queue = new LinkedList<>();
queue.offer(new LinkedList<>());
while (!queue.isEmpty()) {
List<Integer> curr = queue.poll();
results.add(curr);
for (int i = 0; i< n; i++) {
if (curr.size() == 0 || curr.get(curr.size() - 1) < nums[i]) {
List<Integer> intList = new LinkedList<>(curr);
intList.add(nums[i]);
queue.offer(intList);
}
}
}
return results;
}
}
4 最短路径
不考虑负值圈。
4.1 单源无权最短路
使用BFS,按路径长度递增的次序产生找到各个顶点。
4.2 单源有权最短路-Dijkstra
按路径长度递增的次序产生最短路径。
4.3 多源最短路-Floyd
- 要求出每对顶点之间的最短距离
- 稠密图,邻接矩阵
- 动态规划
07-图4 哈利·波特的考试 (25分)
#include <stdio.h>
#include <stdlib.h>
#define MaxVertexNum 101
#define INFINITY 65535
typedef int Vertex; // 顶点下标
typedef int WeightType;
// 图
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;// 顶点数
int Ne;// 边数
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;
// 边
typedef struct ENode *PtrToEnode;
struct ENode{
Vertex V1,V2;
WeightType Weight;
};
typedef PtrToEnode Edge;
// 初始化
MGraph CreateGraph(int VertexNum){
MGraph Graph = (MGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = 0;
for (Vertex V=0; V<Graph->Nv;V++){
for (Vertex W=0; W<Graph->Nv;W++){
Graph->G[V][W] = INFINITY;
}
}
return Graph;
}
void InsertEdge(MGraph Graph, Edge E){
Graph->G[E->V1][E->V2] = E->Weight;
// 无向图
Graph->G[E->V2][E->V1] = E->Weight;
}
MGraph BuildGraph(){
MGraph Graph;
int Nv=0;
scanf("%d", &Nv);
Graph = CreateGraph(Nv);
scanf("%d", &(Graph->Ne));
if (Graph->Ne != 0){
Edge E = (Edge)malloc(sizeof(struct ENode));
for (int i=0; i<Graph->Ne; i++){
scanf("%d %d %d", &(E->V1), &(E->V2), &(E->Weight));
E->V1--;
E->V2--;
InsertEdge(Graph, E);
}
}
return Graph;
}
void Floyd(MGraph Graph, WeightType D[][MaxVertexNum]){
for (Vertex k =0; k<Graph->Nv;k++){
for (Vertex i=0;i<Graph->Nv;i++){
for (Vertex j=0; j<Graph->Nv;j++){
if (D[i][k] + D[k][j] < D[i][j]){
D[i][j] =D[i][k] + D[k][j];
}
}
}
}
}
void FindAnimal(MGraph Graph){
Vertex minI=0;
int minw = INFINITY;
for (Vertex i=0;i<Graph->Nv;i++){
int maxrow = -1;
for (Vertex j=0; j<Graph->Nv;j++){
if (i!=j && Graph->G[i][j] > maxrow){
maxrow =Graph->G[i][j];
}
}
if (maxrow < minw){
minI = i;
minw = maxrow;
} else if (maxrow == INFINITY) {
printf("0\n");
return;
}
}
printf("%d %d\n", minI+1, minw);
}
int main(){
MGraph Graph = BuildGraph();
Floyd(Graph, Graph->G);
FindAnimal(Graph);
}
5 最小生成树
5.1 稠密图-Prim
- 从顶点出发
5.2 稀疏图-Kruskal
- 把森林合并成一颗树
- 从边出发
6 拓扑排序
- 使用队列存储入度为0的节点
网友评论