图
图:图是一组由边组成的节点
图相邻定点:AB
是相邻的,AD
是相邻的,AC
是相邻的,但是AE
不是相邻的
路径:是顶点AB...C
的一个连续序列,其中AB
是相邻的,上图的的路径包括:ABEI
简单路径:要求不包含重复的顶点,举个例子ADG
就是一个简单的路径
图的表示
邻接矩阵
这部分的表示就是用二维数组进行表示,如果a[i][j]
之间为一,就表示二者之间是有路径的,上图的邻接矩阵是:
邻接表
邻接表由每个顶点的相邻顶点的列表所组成,下面的表示方式是邻接表的表示方式
邻接表关联矩阵
在关联矩阵中,矩阵的行表示顶点,列表示边,我们使用二维数组来表示二者的连通性,如果顶点v
是边e
的入射点,那么a[v][e] =1
,否则就等于0
这种场景我们很少会用到,不详细说明
创建Graph类
- 我们先创建一个图的数据结构
Graph
,这个数据结构包含顶点(vertices
)和边(adjList
),顶点采用简单的数组结构,边采用Map
的数据结构 - 我们先将所有的顶点添加到我们的图的顶点中,并在这个时候,对顶点的边设置一下对应的值,方便我们后续通过
key
值来进行查找 - 我们一次将边放进来,如果是无向图,我们就需要分别放进来,否则,放一次就可以
function Graph() {
var vertices = [];
var adjList = new Map();
// 添加节点
this.addVertex = function(v) {
vertices.push(v);
adjList.set(v, []);
};
// 添加边
this.addEdge = function(v, w) {
adjList.get(v).push(w);
adjList.get(w).push(v);
};
// 以合适的方式打印出图
this.toString = function() {
var s = "";
for (var i = 0; i < vertices.length; i++) {
s += vertices[i] + "->";
var neighbors = adjList.get(vertices[i]);
for (var j = 0; j < neighbors.length; j++) {
s += neighbors[j] + "";
}
s += "\n";
}
return s;
};
}
// 构造图
var graph = new Graph();
var myVertices = ["A", "B", "C", "D", "E", "F", "G", "H", "I"];
for (let i = 0; i < myVertices.length; i++) {
graph.addVertex(myVertices[i]);
}
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("A", "D");
graph.addEdge("C", "D");
graph.addEdge("C", "G");
graph.addEdge("D", "G");
graph.addEdge("D", "H");
graph.addEdge("B", "E");
graph.addEdge("B", "F");
graph.addEdge("E", "I");
console.log(graph.toString());
广度优先遍历(队列)
还是上面的图结构,我们如果进行广度优先遍历的话,节点的顺序应该是:A,B,C,D,E,F,G,H,I
先从理论上分析一下我们应该如何进行遍历:
- 创建一个队列
Q
- 将
v
从白色变成灰色,并将v
进队列 - 如果
Q
非空,运行下面的步骤- 将
u
从队列中移除 - 将
u
变成灰色 - 将
u
所有违背访问的相邻节点入队列 - 将
u
标为黑色
- 将
function Graph() {
var vertices = [];
var adjList = new Map();
this.addVertex = function(v) {
vertices.push(v);
adjList.set(v, []);
};
this.addEdge = function(v, w) {
adjList.get(v).push(w);
adjList.get(w).push(v);
};
this.toString = function() {
var s = "";
for (var i = 0; i < vertices.length; i++) {
s += vertices[i] + "->";
var neighbors = adjList.get(vertices[i]);
for (var j = 0; j < neighbors.length; j++) {
s += neighbors[j] + "";
}
s += "\n";
}
return s;
};
this.bfs = function(v, callback) {
var color = initialzeColor();
var queue = [];
queue.push(v);
while (queue.length > 0) {
var u = queue.unshift();
neighbors = adjList.get(u);
color[u] = "grey";
for (let i = 0; i < neighbors.length; i++) {
var w = neighbors[i];
if (color[w] === "white") {
color[w] = "grey";
queue.push(w);
}
}
color[u] = "black";
if (callback) {
callback(u);
}
}
};
}
// 构造图
var graph = new Graph();
var myVertices = ["A", "B", "C", "D", "E", "F", "G", "H", "I"];
for (let i = 0; i < myVertices.length; i++) {
graph.addVertex(myVertices[i]);
}
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("A", "D");
graph.addEdge("C", "D");
graph.addEdge("C", "G");
graph.addEdge("D", "G");
graph.addEdge("D", "H");
graph.addEdge("B", "E");
graph.addEdge("B", "F");
graph.addEdge("E", "I");
console.log(graph.toString());
// 广度优先搜索
const initialzeColor = function() {
var color = [];
for (var i = 0; i < myVertices.length; i++) {
color[myVertices[i]] = "white";
}
return color;
};
function prinNode(value) {
console.log("当前的节点:", value);
}
graph.bfs(myVertices, prinNode);
那我们现在觉得只是单纯的遍历这个值是没有任何意义的,那么我们就想可不可以让这个应用有一点点的实用性
使用BFS实现最短路径
我们的计算方式是,我们添加了两个变量,d
和pred
用来记录各个节点与初始节点的长度,以及各个节点的回溯节点,我们计算距离的方式是依靠层的关系,每添加一层,节点的距离就会加一。
this.BFS = function(v, callback) {
var color = initialzeColor();
var queue = [];
var d = []; // 记录距离
var pred = []; // 前溯节点
queue.push(v);
for (let i = 0; i < vertices.length; i++) { //1
d[vertices[i]] = 0;//1
pred[vertices[i]] = null; //1
}
while (queue.length > 0) {
var u = queue.shift();
var neighbors = adjList.get(u);
color[u] = "grey";
for (let i = 0; i < neighbors.length; i++) {
var w = neighbors[i];
if (color[w] === "white") {
color[w] = "grey";
d[w] = d[u] + 1;//1
pred[w] = u; //1
queue.push(w);
}
}
color[u] = "black";
}
return { //1
distance: d,
predecessors: pred
};
};
var short = graph.BFS(myVertices[0]);
console.log(short);
还是根据上图的结果进行打出结果为
最短路径的结果我们先要看各个节点与A
节点的关系,我们可以通过回溯,打出路径
var short = graph.BFS(myVertices[0]);
for (let i = 0; i < myVertices.length; i++) {
var toVertex = myVertices[i];
var path = [];
for (let v = toVertex; v != "A"; v = short.predecessors[v]) {
path.push(v);
}
path.push("A");
var s = path.pop();
while (path.length > 0) {
s += "-" + path.pop();
}
console.log(s);
}
打印的结果为:
节点的路径但是我们发现了,这样的最短路径并不适合如果路径加权或是路径不相等的情况,如果我们希望能够找到复杂情况的最短路径,我们需要使用深度遍历的方法啦
总的代码
function Graph() {
var vertices = [];
var adjList = new Map();
this.addVertex = function(v) {
vertices.push(v);
adjList.set(v, []);
};
this.addEdge = function(v, w) {
adjList.get(v).push(w);
adjList.get(w).push(v);
};
this.toString = function() {
var s = "";
for (var i = 0; i < vertices.length; i++) {
s += vertices[i] + "->";
var neighbors = adjList.get(vertices[i]);
for (var j = 0; j < neighbors.length; j++) {
s += neighbors[j] + "";
}
s += "\n";
}
return s;
};
this.bfs = function(v, callback) {
var color = initialzeColor();
var queue = [];
queue.push(v);
while (queue.length > 0) {
var u = queue.shift();
var neighbors = adjList.get(u);
color[u] = "grey";
for (let i = 0; i < neighbors.length; i++) {
var w = neighbors[i];
if (color[w] === "white") {
color[w] = "grey";
queue.push(w);
}
}
color[u] = "black";
if (callback) {
callback(u);
}
}
};
this.BFS = function(v, callback) {
var color = initialzeColor();
var queue = [];
var d = []; // 记录距离
var pred = []; // 前溯节点
queue.push(v);
for (let i = 0; i < vertices.length; i++) {
d[vertices[i]] = 0;
pred[vertices[i]] = null;
}
while (queue.length > 0) {
var u = queue.shift();
var neighbors = adjList.get(u);
color[u] = "grey";
for (let i = 0; i < neighbors.length; i++) {
var w = neighbors[i];
if (color[w] === "white") {
color[w] = "grey";
d[w] = d[u] + 1;
pred[w] = u;
queue.push(w);
}
}
color[u] = "black";
}
return {
distance: d,
predecessors: pred
};
};
}
// 构造图
var graph = new Graph();
var myVertices = ["A", "B", "C", "D", "E", "F", "G", "H", "I"];
for (let i = 0; i < myVertices.length; i++) {
graph.addVertex(myVertices[i]);
}
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("A", "D");
graph.addEdge("C", "D");
graph.addEdge("C", "G");
graph.addEdge("D", "G");
graph.addEdge("D", "H");
graph.addEdge("B", "E");
graph.addEdge("B", "F");
graph.addEdge("E", "I");
// console.log(graph.toString());
// 广度优先搜索
const initialzeColor = function() {
var color = [];
for (var i = 0; i < myVertices.length; i++) {
color[myVertices[i]] = "white";
}
return color;
};
function prinNode(value) {
// console.log("visited Node is", value);
}
graph.bfs("A", prinNode);
var short = graph.BFS(myVertices[0]);
for (let i = 0; i < myVertices.length; i++) {
var toVertex = myVertices[i];
var path = [];
for (let v = toVertex; v != "A"; v = short.predecessors[v]) {
path.push(v);
}
path.push("A");
var s = path.pop();
while (path.length > 0) {
s += "-" + path.pop();
}
console.log(s);
}
console.log(short);
未完待续。。。
网友评论