美文网首页
用ggpubr包绘制图表

用ggpubr包绘制图表

作者: Seurat_Satija | 来源:发表于2021-10-18 09:42 被阅读0次

    本文参考ggpubr包官方文档https://rpkgs.datanovia.com/ggpubr/index.htmlhttp://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/
    ggpubr 包是基于ggplot2包,非R数据专业人员可用ggpubr包绘制图表

    下载安装ggpubr

    install.packages("ggpubr")
    
    

    或者使用以下命令

    if(!require(devtools)) install.packages("devtools")
    devtools::install_github("kassambara/ggpubr")
    
    

    ggpubr可绘制大部分我们常用的图形

    • 分布图(Distribution)
      • 密度分布图以及边际地毯线并添加平均值线(Density plot with mean lines and marginal rug)
      • 带有均值线和边际地毯线的直方图Histogram plot with mean lines and marginal rug)
    • 箱线图和小提琴图(Box plots and violin plots)
      • 具有不同点分布的箱线图(Box plots with jittered points)
      • 小提琴图内添加箱线图(Violin plots with box plots inside)
    • 条形图(Bar plots)
      • 有序的条形图(Ordered bar plots)
      • 偏差图(Deviation graphs)
    • 点图 (Dot charts)
      • 棒棒糖图表(Lollipop chart)
      • 偏差图(Deviation graphs)
      • 克利夫兰点图(Cleveland’s dot plot)

    首先:

    分布图——密度分布图

    library(ggpubr)  #加载ggubr, 同时也要安装加载ggplot2, magrittr 这两个包
    #> Le chargement a nécessité le package : ggplot2
    #> Le chargement a nécessité le package : magrittr
    # Create some data format 设置数值
    # :::::::::::::::::::::::::::::::::::::::::::::::::::
    set.seed(1234) 
    # set.seed 用于设定随机数种子, 
    #一个特定的种子可以产生一个特定的伪随机序列,
    #这个函数的主要目的,是让你的模拟能够可重复出现,
    #因为很多时候我们需要取随机数,但这段代码再跑一次的时候,
    #结果就不一样了,如果需要重复出现同样的模拟结果的话,
    #就可以用set.seed()。在调试程序或者做展示的时候,
    #结果的可重复性是很重要的,所以随机数种子也就很有必要。
    #参考:https://blog.csdn.net/vencent_cy/article/details/50350020 
    
    wdata = data.frame(
       sex = factor(rep(c("F", "M"), each=200)),
       weight = c(rnorm(200, 55), rnorm(200, 58)))
    head(wdata, 4)        #设置一个数据框,包含sex因子,weight 向量,输出前5行
    #>   sex   weight
    #> 1   F 53.79293
    #> 2   F 55.27743
    #> 3   F 56.08444
    #> 4   F 52.65430
    
    # Density plot with mean lines and marginal rug
    #密度分布图以及边际地毯线并添加平均值线
    # :::::::::::::::::::::::::::::::::::::::::::::::::::
    # Change outline and fill colors by groups ("sex") 按性别更改轮廓和填充颜色
    # Use custom palette  使用自定义调色板
    ggdensity(wdata, x = "weight",
       add = "mean", rug = TRUE,
       color = "sex", fill = "sex",
       palette = c("#00AFBB", "#E7B800"))
    
    # ggdensity绘图,设定x轴,添加平均线。
    # rug =TRUE 是添加边缘地毯线,
    # 如果rug=F,则不添加,可以看以下两张图的区别
    
    
    image image

    分布图——直方图

    # Histogram plot with mean lines and marginal rug
    # 带有均值线和边际地毯线的直方图
    # :::::::::::::::::::::::::::::::::::::::::::::::::::
    # Change outline and fill colors by groups ("sex")
    # Use custom color palette #使用自定义调色板
    gghistogram(wdata, x = "weight",
       add = "mean", rug = TRUE,
       color = "sex", fill = "sex",
       palette = c("#00AFBB", "#E7B800"))
    
    
    image

    其次:

    箱线图及小提琴图—— 具有不同点分布的箱线图

    # Load data  加载ToothGrowth数据,
    # 它描述了维生素C对豚鼠牙齿生长的影响。 
    # 使用三种剂量水平的维生素C(0.5mg,1mg和2 mg)
    # 和两种递送方法[橙汁(OJ)或抗坏血酸(VC)]中的每一种
    data("ToothGrowth")
    df <- ToothGrowth
    head(df, 4)  #输出前4行
    #>    len supp dose
    #> 1  4.2   VC  0.5
    #> 2 11.5   VC  0.5
    #> 3  7.3   VC  0.5
    #> 4  5.8   VC  0.5
    
    # Box plots with jittered points
    # :::::::::::::::::::::::::::::::::::::::::::::::::::
    # Change outline colors by groups: dose
    # Use custom color palette
    # Add jitter points and change the shape by groups
     p <- ggboxplot(df, x = "dose", y = "len",
                    color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
                    add = "jitter", shape = "dose")
     p
    
    
    image
     # Add p-values comparing groups  每组添加p值
     # Specify the comparisons you want 设置你想比较的任意组
    my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
    p + stat_compare_means(comparisons = my_comparisons)+   stat_compare_means(label.y = 50)
    # Add pairwise comparisons p-value 添加成对p值
             # Add global p-value   添加全局p值   
    
    
    image

    箱线图及小提琴图—— 小提琴图内添加箱线图

    # Violin plots with box plots inside
    #小提琴图内添加箱线图
    # :::::::::::::::::::::::::::::::::::::::::::::::::::
    # Change fill color by groups: dose 以计量填充
    # add boxplot with white fill color 
    ggviolin(df, x = "dose", y = "len", fill = "dose",
             palette = c("#00AFBB", "#E7B800", "#FC4E07"), #颜色随机
             add = "boxplot", add.params = list(fill = "white"))+ #添加内部箱线图
      stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ 
    # Add significance levels  添加显著水平
      stat_compare_means(label.y = 50)                        
                  # Add global the p-value  添加全局影响因子
    
    
    image

    第三

    条形图—— 有序的条形图

    # Load data   加载内置数据集 mtcars
    data("mtcars")
    dfm <- mtcars
    # Convert the cyl variable to a factor  将cyl 变量转换为因子
    dfm$cyl <- as.factor(dfm$cyl)
    # Add the name colums    添加name列
    dfm$name <- rownames(dfm) 
    # Inspect the data
    head(dfm[, c("name", "wt", "mpg", "cyl")])
    #>                                name    wt  mpg cyl
    #> Mazda RX4                 Mazda RX4 2.620 21.0   6
    #> Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0   6
    #> Datsun 710               Datsun 710 2.320 22.8   4
    #> Hornet 4 Drive       Hornet 4 Drive 3.215 21.4   6
    #> Hornet Sportabout Hornet Sportabout 3.440 18.7   8
    #> Valiant                     Valiant 3.460 18.1   6
    
    
    ggbarplot(dfm, x = "name", y = "mpg",
              fill = "cyl",               # change fill color by cyl
              color = "white",            # Set bar border colors to white
              palette = "jco",            # jco journal color palett. see ?ggpar
              sort.val = "desc",          # Sort the value in dscending order
              sort.by.groups = FALSE,     # Don't sort inside each group 
    不按组排序
              x.text.angle = 90           # Rotate vertically x axis texts
              )
    
    
    image
    ggbarplot(dfm, x = "name", y = "mpg",
              fill = "cyl",               # change fill color by cyl
              color = "white",            # Set bar border colors to white
              palette = "jco",            # jco journal color palett. see ?ggpar
              sort.val = "asc",           # Sort the value in dscending order
              sort.by.groups = TRUE,      # Sort inside each group 按组排序
              x.text.angle = 90           # Rotate vertically x axis texts
              )
    
    
    image

    条形图—— 偏差图

    # Calculate the z-score of the mpg data
    dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
    dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"), 
                         levels = c("low", "high"))
    # Inspect the data
    head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])
    #>                                name    wt  mpg      mpg_z mpg_grp cyl
    #> Mazda RX4                 Mazda RX4 2.620 21.0  0.1508848    high   6
    #> Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0  0.1508848    high   6
    #> Datsun 710               Datsun 710 2.320 22.8  0.4495434    high   4
    #> Hornet 4 Drive       Hornet 4 Drive 3.215 21.4  0.2172534    high   6
    #> Hornet Sportabout Hornet Sportabout 3.440 18.7 -0.2307345     low   8
    #> Valiant                     Valiant 3.460 18.1 -0.3302874     low   6
    
    
    ggbarplot(dfm, x = "name", y = "mpg_z",
              fill = "mpg_grp",           # change fill color by mpg_level
              color = "white",            # Set bar border colors to white
              palette = "jco",            # jco journal color palett. see ?ggpar
              sort.val = "asc",           # Sort the value in ascending order
              sort.by.groups = FALSE,     # Don't sort inside each group
              x.text.angle = 90,          # Rotate vertically x axis texts
              ylab = "MPG z-score",
              xlab = FALSE,
              legend.title = "MPG Group"
              )
    
    
    image
    Rotate the plot: use rotate = TRUE and sort.val = “desc”  转换角度
    ggbarplot(dfm, x = "name", y = "mpg_z",
              fill = "mpg_grp",           # change fill color by mpg_level
              color = "white",            # Set bar border colors to white
              palette = "jco",            # jco journal color palett. see ?ggpar
              sort.val = "desc",          # Sort the value in descending order
              sort.by.groups = FALSE,     # Don't sort inside each group
              x.text.angle = 90,          # Rotate vertically x axis texts
              ylab = "MPG z-score",
              legend.title = "MPG Group",
              rotate = TRUE,
              ggtheme = theme_minimal()
              )
    
    
    image

    最后

    点图——棒棒糖点图

    ggdotchart(dfm, x = "name", y = "mpg",
               color = "cyl",                                # Color by groups
               palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
               sorting = "ascending",                        # Sort value in descending order
               add = "segments",                             # Add segments from y = 0 to dots
               ggtheme = theme_pubr()                        # ggplot2 theme
               )
    
    
    image

    设置参数

    • Sort in decending order. sorting = “descending”.
    • Rotate the plot vertically, using rotate = TRUE.
    • Sort the mpg value inside each group by using group = “cyl”.
    • Set dot.size to 6.
    • Add mpg values as label. label = “mpg” or label = round(dfm$mpg).
    ggdotchart(dfm, x = "name", y = "mpg",
               color = "cyl",                                # Color by groups
               palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
               sorting = "descending",                       # Sort value in descending order
               add = "segments",                             # Add segments from y = 0 to dots
               rotate = TRUE,                                # Rotate vertically
               group = "cyl",                                # Order by groups
               dot.size = 6,                                 # Large dot size
               label = round(dfm$mpg),                        # Add mpg values as dot labels
               font.label = list(color = "white", size = 9, 
                                 vjust = 0.5),               # Adjust label parameters
               ggtheme = theme_pubr()                        # ggplot2 theme
               )
    
    
    image

    **点图——偏差图

    • Use y = “mpg_z”
    • Change segment color and size: add.params = list(color = “lightgray”, size = 2)
    
    ggdotchart(dfm, x = "name", y = "mpg_z",
               color = "cyl",                                # Color by groups
               palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
               sorting = "descending",                       # Sort value in descending order
               add = "segments",                             # Add segments from y = 0 to dots
               add.params = list(color = "lightgray", size = 2), # Change segment color and size
               group = "cyl",                                # Order by groups
               dot.size = 6,                                 # Large dot size
               label = round(dfm$mpg_z,1),                        # Add mpg values as dot labels
               font.label = list(color = "white", size = 9, 
                                 vjust = 0.5),               # Adjust label parameters
               ggtheme = theme_pubr()                        # ggplot2 theme
               )+
      geom_hline(yintercept = 0, linetype = 2, color = "lightgray")
    
    
    image

    Color y text by groups. Use y.text.col = TRUE.

    ggdotchart(dfm, x = "name", y = "mpg",
               color = "cyl",                                # Color by groups
               palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
               sorting = "descending",                       # Sort value in descending order
               rotate = TRUE,                                # Rotate vertically
               dot.size = 2,                                 # Large dot size
               y.text.col = TRUE,                            # Color y text by groups
               ggtheme = theme_pubr()                        # ggplot2 theme
               )+
      theme_cleveland()                                      # Add dashed grids
    
    
    image

    以上 。

    相关文章

      网友评论

          本文标题:用ggpubr包绘制图表

          本文链接:https://www.haomeiwen.com/subject/ttngoltx.html