美文网首页
二. 文本预处理,语言模型,RNN

二. 文本预处理,语言模型,RNN

作者: copain_sir | 来源:发表于2020-02-14 18:14 被阅读0次

    1.文本预处理

    文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括以下步骤:

    1.1读入文本

    import re
    
    def read():
        with open('data/Pride and Prejudice.txt', 'r') as f:
            lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
        return lines
    
    lines = read()
    print('sentences %d' % len(lines))  # 4263
    

    read函数里,全部字母变成小写,lines的每一个元素都是一个句子

    1.2. 分词

    对于中文分词,目前jieba分词用的比较广发,而且功能全面也更精确,具体用法参考https://www.jianshu.com/p/883c2171cdb5
    我们对每个句子进行分词,也就是将一个句子划分成若干个词(token),转换为一个词的序列。

    ef tokenize(sentences, token='word'):
        """Split sentences into word or char tokens"""
        if token == 'word':
            return [sentence.split(' ') for sentence in sentences]
        elif token == 'char':
            return [list(sentence) for sentence in sentences]
        else:
            print('ERROR: unkown token type '+token)
    
    tokens = tokenize(lines)
    print(tokens[4:5])
    

    [['however', 'little', 'known', 'the', 'feelings', 'or', 'views', 'of', 'such', 'a', 'man', 'may', 'be', 'on', ...

    1.3. 建立字典

    将每个词映射到一个唯一的索引(index)

    class Vocab(object):
        def __init__(self, tokens, min_freq=0, use_special_tokens=False):
            counter = count_corpus(tokens)  # : 
            self.token_freqs = list(counter.items())
            self.idx_to_token = []
            if use_special_tokens:
                # padding, begin of sentence, end of sentence, unknown
                self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
                self.idx_to_token += ['', '', '', '']
            else:
                self.unk = 0
                self.idx_to_token += ['']
            self.idx_to_token += [token for token, freq in self.token_freqs
                            if freq >= min_freq and token not in self.idx_to_token]
            self.token_to_idx = dict()
            for idx, token in enumerate(self.idx_to_token):
                self.token_to_idx[token] = idx
    
        def __len__(self):
            return len(self.idx_to_token)
    
        def __getitem__(self, tokens):
            if not isinstance(tokens, (list, tuple)):
                return self.token_to_idx.get(tokens, self.unk)
            return [self.__getitem__(token) for token in tokens]
    
        def to_tokens(self, indices):
            if not isinstance(indices, (list, tuple)):
                return self.idx_to_token[indices]
            return [self.idx_to_token[index] for index in indices]
    
    def count_corpus(sentences):
        tokens = [tk for st in sentences for tk in st]
        return collections.Counter(tokens)  # 返回一个字典,记录每个词的出现次数
    
    vocab = Vocab(tokens)
    print(list(vocab.token_to_idx.items())[0:10])
    

    [('', 0), ('chapter', 1), ('it', 2), ('is', 3), ('a', 4), ('truth', 5), ('universally', 6), ('acknowledged', 7), ('that', 8), ('single', 9)]

    2.语言模型

    假设序列w_1, w_2, \ldots, w_T中的每个词是依次生成的,我们有

    \begin{align*} P(w_1, w_2, \ldots, w_T) &= \prod_{t=1}^T P(w_t \mid w_1, \ldots, w_{t-1})\\ &= P(w_1)P(w_2 \mid w_1) \cdots P(w_T \mid w_1w_2\cdots w_{T-1}) \end{align*}

    例如,一段含有4个词的文本序列的概率

    P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).

    语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w_1的概率可以计算为:

    \hat P(w_1) = \frac{n(w_1)}{n}

    其中n(w_1)为语料库中以w_1作为第一个词的文本的数量,n为语料库中文本的总数量。
    类似的,给定w_1情况下,w_2的条件概率可以计算为:

    \hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)}

    其中n(w_1, w_2)为语料库中以w_1作为第一个词,w_2作为第二个词的文本的数量。

    n元语法

    序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面n个词相关,即n阶马尔可夫链(Markov chain of order n),如果n=1,那么有P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)。基于n-1阶马尔可夫链,我们可以将语言模型改写为

    P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .

    以上也叫n元语法(n-grams),它是基于n - 1阶马尔可夫链的概率语言模型。例如,当n=2时,含有4个词的文本序列的概率就可以改写为:

    \begin{align*} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) \end{align*}

    n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列w_1, w_2, w_3, w_4在一元语法、二元语法和三元语法中的概率分别为

    \begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned}

    n较小时,n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当n较大时,n元语法需要计算并存储大量的词频和多词相邻频率。

    以上都是基于统计的语言模型,属于基本概念,为后续RNN的知识做好准备

    3.RNN-循环神经网络

    本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量H,用H_{t}表示H在时间步t的值。H_{t}的计算基于X_{t}H_{t-1},可以认为H_{t}记录了到当前字符为止的序列信息,利用H_{t}对序列的下一个字符进行预测。

    image

    3.1RNN的构造

    我们先看循环神经网络的具体构造。假设\boldsymbol{X}_t \in \mathbb{R}^{n \times d}是时间步t的小批量输入,\boldsymbol{H}_t \in \mathbb{R}^{n \times h}是该时间步的隐藏变量,则:
    \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h).

    其中,\boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h}\boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h}\boldsymbol{b}_{h} \in \mathbb{R}^{1 \times h}\phi函数是非线性激活函数。由于引入了\boldsymbol{H}_{t-1} \boldsymbol{W}_{hh}H_{t}能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于H_{t}的计算基于H_{t-1},上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。
    在时间步t,输出层的输出为:
    \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q.

    其中\boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q}\boldsymbol{b}_q \in \mathbb{R}^{1 \times q}

    3.2 Code

    这部分展示核心的代码,完整的代码在后面的更新中完善
    基本的网络构造

    rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)
    
    class RNNModel(nn.Module):
        def __init__(self, rnn_layer, vocab_size):
            super(RNNModel, self).__init__()
            self.rnn = rnn_layer
            self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1) 
            self.vocab_size = vocab_size
            self.dense = nn.Linear(self.hidden_size, vocab_size)
    
        def forward(self, inputs, state):
            # inputs.shape: (batch_size, num_steps)
            X = to_onehot(inputs, vocab_size)
            X = torch.stack(X)  # X.shape: (num_steps, batch_size, vocab_size)
            hiddens, state = self.rnn(X, state)
            hiddens = hiddens.view(-1, hiddens.shape[-1])  # hiddens.shape: (num_steps * batch_size, hidden_size)
            output = self.dense(hiddens)
            return output, state
    

    训练

    for epoch in range(num_epochs):
            l_sum, n, start = 0.0, 0, time.time()
            data_iter = dataset # 准备的数据
            state = None
            for X, Y in data_iter:
                if state is not None:
                    # 使用detach函数从计算图分离隐藏状态
                    if isinstance (state, tuple): # LSTM, state:(h, c)  
                        state[0].detach_()
                        state[1].detach_()
                    else: 
                        state.detach_()
                (output, state) = model(X, state) # output.shape: (num_steps * batch_size, vocab_size)
                y = torch.flatten(Y.T)
                l = loss(output, y.long())
                
                optimizer.zero_grad()
                l.backward()
                grad_clipping(model.parameters(), clipping_theta, device)
                optimizer.step()
                l_sum += l.item() * y.shape[0]
                n += y.shape[0]
    

    相关文章

      网友评论

          本文标题:二. 文本预处理,语言模型,RNN

          本文链接:https://www.haomeiwen.com/subject/ttpdfhtx.html