美文网首页LeetCode、剑指offer
【leetcode】Edit Distance(编辑距离)(动态

【leetcode】Edit Distance(编辑距离)(动态

作者: 邓泽军_3679 | 来源:发表于2019-04-04 11:31 被阅读0次

    1、题目描述

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

    You have the following 3 operations permitted on a word:

    Insert a character
    Delete a character
    Replace a character
    Example 1:

    Input: word1 = "horse", word2 = "ros"
    Output: 3
    Explanation:
    horse -> rorse (replace 'h' with 'r')
    rorse -> rose (remove 'r')
    rose -> ros (remove 'e')

    Example 2:

    Input: word1 = "intention", word2 = "execution"
    Output: 5
    Explanation:
    intention -> inention (remove 't')
    inention -> enention (replace 'i' with 'e')
    enention -> exention (replace 'n' with 'x')
    exention -> exection (replace 'n' with 'c')
    exection -> execution (insert 'u')

    2、问题描述:

    • 求两个字符串如何变成一样的,最少的步骤,典型的动态规划问题。

    3、问题关键:

    • 对于当前比较的两个字符 word1[i] 和 word2[j],若二者相同,一切好说,直接跳到下一个位置。若不相同,有三种处理方法,首先是直接插入一个 word2[j],那么 word2[j] 位置的字符就跳过了,接着比较 word1[i] 和 word2[j+1] 即可。第二个种方法是删除,即将 word1[i] 字符直接删掉,接着比较 word1[i+1] 和 word2[j] 即可。第三种则是将 word1[i] 修改为 word2[j],接着比较 word1[i+1] 和 word[j+1] 即可。

    • 状态表示:f[i][j] 表示word1的 前i个字符变成word2的前j个字符,最少需要操作数。
    • 状态转移:四种情况:

    1.如果word1[i] == word2[j],则其操作数为f[i-1][j - 1];
    2.将word1[i]修改word2[j]为一样的,则操作数为:f[i - 1][j -1] + 1;
    3.将word1[i] 删除,则其操作次数等于f[i - 1][j] + 1;
    4.将word1[i]前word2[j],则其i操作数等于f[i][j - 1] + 1;

    时间复杂度O(n^2).

    4、C++代码:

    class Solution {
    public:
        int minDistance(string word1, string word2) {
            int m = word1.size(), n = word2.size();
            vector<vector<int>> dp(m + 1, vector<int>(n + 1));
            for (int i = 0; i <= m; ++i) dp[i][0] = i;
            for (int i = 0; i <= n; ++i) dp[0][i] = i;
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    if (word1[i - 1] == word2[j - 1]) {
                        dp[i][j] = dp[i - 1][j - 1];
                    } else {
                        dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
                    }
                }
            }
            return dp[m][n];
        }
    };
    

    相关文章

      网友评论

        本文标题:【leetcode】Edit Distance(编辑距离)(动态

        本文链接:https://www.haomeiwen.com/subject/tuhfiqtx.html