美文网首页
Android Handler详解:消息发送详解,缓存池大小..

Android Handler详解:消息发送详解,缓存池大小..

作者: Fighter_hance | 来源:发表于2018-01-15 09:46 被阅读0次

    关于Handler的一些构造函数的解释,请参考Handler主要构造参数,通过这篇文章,大致可以对Handler的构造有一个粗浅的认识

    下面我们从源码的角度来仔细分析一下Hanlder的收发消息机制,以及主线程和子线程对Handler不同处理

    在子线程中用handler收发消息的常见代码

            Thread uiThread = new Thread(uiRunable);
            uiThread.start();
    
        private Runnable uiRunable = new Runnable() {
            @Override
            public void run() {
                Looper.prepare();
                Handler uiHandler = new Handler(){
                    @Override
                    public void handleMessage(Message msg) {
                        super.handleMessage(msg);
                        MiGuTvDebug.showDLevelLog("**GameMainActivity uiHandler msg**" + msg.what);
                    }
                };
                Message msg = new Message();
                msg.what = 1;
                uiHandler.sendMessage(msg);
                Looper.loop();
            }
        };
    

    我们先看第5行的代码,创建一个匿名内部类uiHandler ,我们具体看下他构造的过程

        public Handler() {
            this(null, false);
        }
    

    其调用的是

        public Handler(Callback callback, boolean async) {
            if (FIND_POTENTIAL_LEAKS) {
                final Class<? extends Handler> klass = getClass();
                if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                        (klass.getModifiers() & Modifier.STATIC) == 0) {
                    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                        klass.getCanonicalName());
                }
            }
    
            mLooper = Looper.myLooper();
            if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread that has not called Looper.prepare()");
            }
            mQueue = mLooper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }
    

    在这个方法里面,FIND_POTENTIAL_LEAKS的值为false,里面的逻辑我们暂时可以不用关注;紧接着我们通过Looper.myLooper()的方式获得一个Looper,当Looper为null的时候,抛出异常Can't create handler inside thread that has not called Looper.prepare(),因此在子线程中直接创建Hanlder会报错。

    问题一:为什么我们调用了Looper.prepare()会使得mLooper 不为null,不报错?查看源码

        public static void prepare() {
            prepare(true);
        }
    

    其调用

        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    

    在这里我们可以知道当调用prepare的时候,我们会创建一个Looper到sThreadLocal里面,同时quitAllowed的值为true,请记住这是在子线程中调用Looper.prepare的时候,quitAllowed的值为true; Looper主要是与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue

    问题二: 这里的quitAllowed的值为true,或者为false有什么区别

    quitAllowed的值有子线程和主线程的区别,子线程通过Looper.prepare来完成looper的创建,其中quitAllowed的值为true;然而主线程是通过Looper.prepareMainLooper来完成looper的创建,我们看下代码

        public static void prepareMainLooper() {
            prepare(false);
            synchronized (Looper.class) {
                if (sMainLooper != null) {
                    throw new IllegalStateException("The main Looper has already been prepared.");
                }
                sMainLooper = myLooper();
            }
        }
    

    从这里就可以发现,此处调用的prepare方法传入的值就为false

    问题三:quitAllowed的值作用在
    对于这个问题,我们先看下Looper.prepare中,new一个Looper的时候都做了什么

        private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
        }
    

    从这里我们可以看见Looper.prepare完成了消息队列的创建,同时将quitAllowed的值付给MessageQueue,MessageQueue的构造如下

        MessageQueue(boolean quitAllowed) {
            mQuitAllowed = quitAllowed;
            mPtr = nativeInit();
        }
    

    在构造中有一个mQuitAllowed变量,我们知道当完成消息收发之后,我们需要调用Looper.quit或者quitSafely来退出这个Looper

    //Looper.java
        public void quit() {
            mQueue.quit(false);
        }
    
    //Looper.java
        public void quitSafely() {
            mQueue.quit(true);
        }
    

    当调用quit或者quitSafely的时候,会调用MessageQueue的quit方法

    //MessageQueue.java
        void quit(boolean safe) {
            if (!mQuitAllowed) {
                throw new IllegalStateException("Main thread not allowed to quit.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    return;
                }
                mQuitting = true;
    
                if (safe) {
                    removeAllFutureMessagesLocked();
                } else {
                    removeAllMessagesLocked();
                }
    
                // We can assume mPtr != 0 because mQuitting was previously false.
                nativeWake(mPtr);
            }
        }
    

    此时我们便可以知道quitAllowed的作用了,在线程中是允许调用quit或者quitSafely来完成退出Looper,因此子线程在prepare的时候new Looper(quitAllowed)的值为true,因此其是可以退出的;
    但是主线程在prepareMainLooper的时候new Looper(quitAllowed)的值为false,因此主线程是不可以调用退出接口的,否则会报Main thread not allowed to quit.的错误

    问题四:Looper.java中的quit和quitSafely区别
    quit和quitSafely均会调用MessageQueue.java的quit方法,只不过传值不同罢了;当调用quit的时候,其间接调用的是removeAllMessagesLocked方法,而quitSafely其间接调用的是removeAllFutureMessagesLocked方法;

        private void removeAllMessagesLocked() {
            Message p = mMessages;
            while (p != null) {
                Message n = p.next;
                p.recycleUnchecked();
                p = n;
            }
            mMessages = null;
        }
    
        private void removeAllFutureMessagesLocked() {
            final long now = SystemClock.uptimeMillis();
            Message p = mMessages;
            if (p != null) {
                if (p.when > now) {
                    removeAllMessagesLocked();
                } else {
                    Message n;
                    for (;;) {
                        n = p.next;
                        if (n == null) {
                            return;
                        }
                        if (n.when > now) {
                            break;
                        }
                        p = n;
                    }
                    p.next = null;
                    do {
                        p = n;
                        n = p.next;
                        p.recycleUnchecked();
                    } while (n != null);
                }
            }
        }
    

    removeAllMessagesLocked方法的代码比较简单,通过一个循环,将所有的消息全部移除掉,包括延迟的消息;我们查看removeAllFutureMessagesLocked方法的第五行,通过对消息的创建时间和当前时间做对比,如果消息时间大于当前时间,即这个消息是延迟消息,则我们会移除掉;针对消息列队里面非延迟消息,则会通过第七行的else交给handler进行处理

    现在Looper,消息队列都创建好了,现在就剩下消息的收发了;
    我们来看uiHandler.sendMessage(msg);

    //将消息插入到消息列队的尾端
        public final boolean sendMessage(Message msg)
        {
            return sendMessageDelayed(msg, 0);
        }
    
        public final boolean sendMessageDelayed(Message msg, long delayMillis)
        {
            if (delayMillis < 0) {
                delayMillis = 0;
            }
            //SystemClock.uptimeMillis()获得是手机启动到当前的这段时间,其中是不包括系统深度休眠的时间,SystemClock.elapsedRealtime()和SystemClock.elapsedRealtimeNanos()表示系统开机到当前的时间总数。它包括了系统深度睡眠的时间。
            return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
        }
    
        public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
            MessageQueue queue = mQueue;
            if (queue == null) {
                RuntimeException e = new RuntimeException(
                        this + " sendMessageAtTime() called with no mQueue");
                Log.w("Looper", e.getMessage(), e);
                return false;
            }
            //enqueue(排队)
            return enqueueMessage(queue, msg, uptimeMillis);
        }
    

    最终会调用MessageQueue.java的enqueueMessage方法

        boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    这个方法有点复杂, 我们细细来看下;
    msg.target就是指我们的Handler,当其为null的时候,抛出异常Message must have a target
    当消息在被使用的时候,抛出异常This message is already in use
    当我们调用了Looper的quit或者quitSafely方法之后,会调用MessageQueue.java的quit方法,在这个方法里面会将mQuitting设置为true,因此当发送消息的时候,如果发现已经调用了相关退出方法,则会抛出异常sending message to a Handler on a dead thread
    第20行,每一个MessageQueue使用的是mMessages来保持一个消息
    从22到52行,按照时间顺序将消息进行入队操作

    问题五:既然MessageQueue使用变量mMessages来维持一个队列,那一个变量怎么对应那么多的
    消息队列?,我们先看下Message.java这个类

    public final class Message implements Parcelable {
    
        // sometimes we store linked lists of these things
        /*package*/ Message next;
        
        private static final Object sPoolSync = new Object();
        private static Message sPool;
        private static int sPoolSize = 0;
    
        private static final int MAX_POOL_SIZE = 50;
    }
    

    Message类是一个序列化的类,因此可以在进程间进行传递消息;Message的成员有next、sPool和sPoolSize,可以看出这是一个典型的链表结构,sPool就是一个全局的消息池即链表,next记录链表中的下一个元素,sPoolSize记录链表长度,MAX_POOL_SIZE表示链表的最大长度为50。
    因此通过next和sPool我们便可以获取下一个消息;

    问题六:那缓存很多的消息,会造成内存泄漏吗?
    答案是不会的,至于为什么,我们需要结合Looper.loop方法来看;

    问题七:消息队列最大缓存大小是50,那是不是说如果缓存了超过50个的消息,则在不处理的情况下,无法塞入第51个消息?
    答案是否,在我们调用sendmessage的时候,其实是向message这个链表的尾端插入一个message,这个长度是没有限制的,所以如果你不断通过new message的方式去调用sendmessage的时候,是会出现内存溢出的问题的;然而如果你通过Message.obtain方法去获取一个消息,其是在消息池中获得一个消息,当然当消息池没有消息的时候,会new一个消息;
    MAX_POOL_SIZE主要用在缓存的消息池中,这个消息池最大缓存50个消息,即当调用obtain方法之后,消息池中缓存的消息数减一,当调用loop方法之后,消息池中的消息数加一,当消息池中的消息数大于MAX_POOL_SIZE的时候,则消息池中的消息数不加一,也不将消息添加到消息池中,而这个消息池主要用来重复利用从而避免更多的内存消耗。

    我们来看下Meesage.obtain()这个方法

        /**
         * Return a new Message instance from the global pool. Allows us to
         * avoid allocating new objects in many cases.
         * 从全局的消息池返回一个消息实例,这么避免创建很多实例
         */
        public static Message obtain() {
            synchronized (sPoolSync) {
                if (sPool != null) {
                    Message m = sPool;
                    sPool = m.next;
                    m.next = null;
                    m.flags = 0; // clear in-use flag
                    sPoolSize--;
                    return m;
                }
            }
            return new Message();
        }
    

    在第一次调用obtain方法的时候,sPool为null,因此会创建一个message放到Message的链表微端,此时消息池不做减一的操作
    第7行即Message链表有数据的时候,通过sPool返回链表头中的一个消息,
    第8行将sPool指向链表中的下一个数据,方便下次调用obtain的时候去除第二个数据
    第12行,将消息缓存池的大小减一

    我们在看下消息的发送部分Looper.java的loop方法

       /**
         * Run the message queue in this thread. Be sure to call
         * {@link #quit()} to end the loop.
         * 在当前线程中不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage去处理
         */
        public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                try {
                    msg.target.dispatchMessage(msg);
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
    

    第18行,当调用loop方法之后,这个方法就进行循环,不断的获取消息,交给handler进行处理
    第37行,msg.target即为handler,当调用dispatchMessage方法之后,即将消息交给Handler的handleMessage或者handleCallback进行处理,这里的handlerCallback即

        private static void handleCallback(Message message) {
            message.callback.run();
        }
    

    可见当我们使用Handler的post(Runnable r)方法之后,这个Runnable的run方法就会被执行
    因此post(Runnable r)并不是开启一个线程,只不过是单纯的方法调用罢了;

    第59行调用了Message.java的recycleUnchecked

        /**
         * Recycles a Message that may be in-use.
         * Used internally by the MessageQueue and Looper when disposing of queued Messages.
         * 清空消息的一些状态量,这样是为了避免内存泄漏,然后将消息放入到消息池中,供循环使用
         */
        void recycleUnchecked() {
            // Mark the message as in use while it remains in the recycled object pool.
            // Clear out all other details.
            flags = FLAG_IN_USE;
            what = 0;
            arg1 = 0;
            arg2 = 0;
            obj = null;
            replyTo = null;
            sendingUid = -1;
            when = 0;
            target = null;
            callback = null;
            data = null;
    
            synchronized (sPoolSync) {
                if (sPoolSize < MAX_POOL_SIZE) {
                    next = sPool;
                    sPool = this;
                    sPoolSize++;
                }
            }
        }
    

    第9行到第19行,清空消息的一些状态,节约内存
    第23行,将sPool指向下一个消息
    第24行,sPool即Message
    第25行,将缓存消息池大小加1

    至于其他更新UI的方法,如
    1: Handler的post(Runnable r)方法

        public final boolean post(Runnable r)
        {
           return  sendMessageDelayed(getPostMessage(r), 0);
        }
    
        private static Message getPostMessage(Runnable r) {
            Message m = Message.obtain();
            m.callback = r;
            return m;
        }
    

    其主要就是将Runnable复制给m.callback,当调用Looper的loop接口的时候,会间接的调用Runnable的run方法,

    1. View的post()方法
        /**
         * <p>Causes the Runnable to be added to the message queue.
         * The runnable will be run on the user interface thread.</p>
         *
         * @param action The Runnable that will be executed.
         *
         * @return Returns true if the Runnable was successfully placed in to the
         *         message queue.  Returns false on failure, usually because the
         *         looper processing the message queue is exiting.
         *
         * @see #postDelayed
         * @see #removeCallbacks
         */
        public boolean post(Runnable action) {
            final AttachInfo attachInfo = mAttachInfo;
            if (attachInfo != null) {
                return attachInfo.mHandler.post(action);
            }
    
            // Postpone the runnable until we know on which thread it needs to run.
            // Assume that the runnable will be successfully placed after attach.
            getRunQueue().post(action);
            return true;
        }
    

    第15行,获得attachInfo
    第17行,获得attachInfo的handler,并调用其post方法,完成UI更新,所以也就是调用Hanlder.post完成更新

    这个方法会将Runnable添加到消息列队的尾端,同时runnable会运行在用户自己的线程中

    1. Activity的runOnUiThread()方法
        /**
         * Runs the specified action on the UI thread. If the current thread is the UI
         * thread, then the action is executed immediately. If the current thread is
         * not the UI thread, the action is posted to the event queue of the UI thread.
         *
         * @param action the action to run on the UI thread
         */
        public final void runOnUiThread(Runnable action) {
            if (Thread.currentThread() != mUiThread) {
                mHandler.post(action);
            } else {
                action.run();
            }
        }
    

    也很容易理解了

    相关文章

      网友评论

          本文标题:Android Handler详解:消息发送详解,缓存池大小..

          本文链接:https://www.haomeiwen.com/subject/tydroxtx.html