原始GAN(Ian Goodfellow)
1.https://www.cnblogs.com/fydeblog/p/9439024.html (放羊的水瓶 GAN笔记——理论与实现)
2.https://blog.csdn.net/bluesliuf/article/details/88829578(深度学习的常见模型GAN)
3.https://www.cnblogs.com/DicksonJYL/p/9617443.html(深度学习新星:GAN的基本原理、应用和走向)
4.https://www.jianshu.com/p/9176bb6eea97 (GAN总结)
5.https://www.cnblogs.com/zijunlearningclanguage/p/9644034.html (关于GAN原论文中的数学证明)
6.https://blog.csdn.net/qunnie_yi/article/details/80129740 (模拟上帝之手的对抗博弈——GAN背后的数学原理)
7.https://blog.csdn.net/Sakura55/article/details/81514828 (深度学习----现今主流GAN原理总结及对比)
8.https://blog.csdn.net/qq_25737169/article/details/80874717 (GAN的应用汇总(持续更新))
9.https://www.cnblogs.com/shouhuxianjian/p/7795115.html (GAN及相关论文的对比)
10.https://zhuanlan.zhihu.com/p/54096381 (李宏毅原视频的数学推导部分)
Conditional GAN
1.https://blog.csdn.net/wspba/article/details/54666907 (Conditional Generative Adversarial Nets论文笔记)
2.https://www.cnblogs.com/J-K-Guo/p/7643439.html(CGAN论文阅读)
DCGAN
1.https://blog.csdn.net/liuxiao214/article/details/73500737 (生成对抗网络学习笔记3----论文unsupervised representation learning with deep convolutional generative adversarial)
2.https://blog.csdn.net/liuxiao214/article/details/74502975 (生成对抗网络学习笔记5----DCGAN(unsupervised representation learning with deep convolutional generative adv)的实现)
3.https://www.cnblogs.com/tiny-player/p/6765224.html (Tensorflow学习笔记---2--DCGAN代码学习)
4.https://blog.csdn.net/u013250416/article/details/78254444 (DCGAN代码及实验结果分析)
5.https://www.cnblogs.com/lyrichu/p/9093411.html (DCGAN代码解读!!!)
6.https://blog.csdn.net/chrisyoung95/article/details/79572454 (用DCGAN生成手写体数字图像代码解析)
7.https://blog.csdn.net/missyougoon/article/details/84941834 (DCGAN实现手写数字识别demo!!!!)
8.https://blog.csdn.net/theonegis/article/details/80115340 (基于Keras的DCGAN实现!!!)
9.https://blog.csdn.net/nima1994/article/details/83620725 (keras DCGAN)
10.https://github.com/jacobgil/keras-dcgan (keras版本 可运行)
WGAN WGAN-GP
1.https://www.jianshu.com/p/f1462c489a63(WGAN的来龙去脉)
2.https://www.cnblogs.com/Allen-rg/p/10305125.html(WGAN原理解析)
3.https://www.jianshu.com/p/e901908a1d93(从GAN到WGAN再到WGAN-GP)
4.https://blog.csdn.net/xiaohouzi1992/article/details/80839921(Towards Principled Methods for Training Generative Adversarial Networks的理解)
World Model
1.http://nooverfit.com/wp/%E8%B0%B7%E6%AD%8C%E5%A4%A7%E8%84%91%E7%9A%84%E4%B8%96%E7%95%8C%E6%A8%A1%E5%9E%8Bworld-models%E4%B8%8E%E5%9F%BA%E5%9B%A0%E5%AD%A6%E7%9A%84%E4%B8%80%E4%BA%9B%E6%80%9D%E8%80%83/ (谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码)
2.https://blog.csdn.net/yH0VLDe8VG8ep9VGe/article/details/80156268 (那个爆火的“梦中修炼”AI,你也能用Keras搭一个了)
卷积
1.https://buptldy.github.io/2016/10/29/2016-10-29-deconv/ (Transposed Convolution, Fractionally Strided Convolution or Deconvolution)
2.https://blog.csdn.net/kkkkkiko/article/details/82759941 (深度学习笔记(4):1.4-1.5:CNN中常用两大基本操作:padding、strided convolutions)
3.https://www.jianshu.com/p/cad419491760 (上池化(unpooling),上采样(unsampling)和反卷积(deconvolution)的区别)
AlexNet
https://www.cnblogs.com/gongxijun/p/6027747.html
https://www.jianshu.com/p/00a53eb5f4b3
https://www.runoob.com/w3cnote/working-process-of-the-compiler.html (编译器的工作过程)
网友评论