
0. 链接
1. 题目
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
Constraints:
1 <= m, n <= 100
It's guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.
2. 思路1:动态规划

对于(i, j)点, 由于robot只能向右或者向下, 所以它只可能由(i - 1, j)或(i, j - 1)格子通过向右或向下一次到达, 得到结论
若dp[i][j]表示到达(i,j)的唯一路径数, 则有
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
初始条件为:
dp[i][0] = dp[0][j] = 1
原因是因为终点和起点在同一条直线上, 由于robot没法在向下后再向上到达终点, 所以它也只能通过走直线的方式抵达上述终点,即对于这些终点而言,只有1条路径。
3. 代码
# coding:utf8
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[0] * n for _ in range(m)]
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
def find_and_print(solution, m, n):
print('m={}, n={}, output={}'.format(m, n, solution.uniquePaths(m, n)))
solution = Solution()
find_and_print(solution, 3, 2)
find_and_print(solution, 7, 3)
输出结果
m=3, n=2, output=3
m=7, n=3, output=28
4. 结果

网友评论