一行 Python 代码实现并行,骚技能,Get!

作者: 一墨编程学习 | 来源:发表于2019-04-18 22:20 被阅读6次

    Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏"重"。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。

    传统的例子

    简单搜索下"Python 多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:

    
    import os 
    import PIL
    
    from multiprocessing import Pool 
    from PIL import Image
    
    SIZE = (75,75)
    SAVE_DIRECTORY = 'thumbs'
    
    defget_image_paths(folder):
    return (os.path.join(folder, f) 
    for f in os.listdir(folder) 
    if'jpeg'in f)
    
    defcreate_thumbnail(filename):
    im = Image.open(filename)
    im.thumbnail(SIZE, Image.ANTIALIAS)
    base, fname = os.path.split(filename) 
    save_path = os.path.join(base, SAVE_DIRECTORY, fname)
    im.save(save_path)
    
    if __name__ == '__main__':
    folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
    os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
    
    images = get_image_paths(folder)
    
    pool = Pool
    pool.map(creat_thumbnail, images)
    pool.close
    pool.join
    
    

    哈,看起来有些像 Java 不是吗?

    我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。

    问题在于…

    首先,你需要一个样板类;
    其次,你需要一个队列来传递对象;
    而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。

    worker 越多,问题越多

    按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。

    
    #Example2.py
    '''
    A more realistic thread pool example 
    '''
    
    import time 
    import threading 
    import Queue 
    import urllib2
    
    classConsumer(threading.Thread):
    def__init__(self, queue):
    threading.Thread.__init__(self)
    self._queue = queue
    
    defrun(self):
    whileTrue: 
    content = self._queue.get 
    if isinstance(content, str) and content == 'quit':
    break
    response = urllib2.urlopen(content)
    print'Bye byes!'
    
    defProducer:
    urls = [
    'http://www.python.org', 'http://www.yahoo.com'
    'http://www.scala.org', 'http://www.google.com'
    # etc.. 
    ]
    queue = Queue.Queue
    worker_threads = build_worker_pool(queue, 4)
    start_time = time.time
    
    # Add the urls to process
    for url in urls: 
    queue.put(url) 
    # Add the poison pillv
    for worker in worker_threads:
    queue.put('quit')
    
    worker.join
    
    print'Done! Time taken: {}'.format(time.time - start_time)
    
    defbuild_worker_pool(queue, size):
    workers = 
    for _ in range(size):
    worker = Consumer(queue)
    worker.start 
    workers.append(worker)
    return workers
    
    if __name__ == '__main__':
    Producer
    
    

    这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……

    至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。

    何不试试 map

    map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。

    
    urls = ['http://www.yahoo.com', 'http://www.reddit.com']
    results = map(urllib2.urlopen, urls)
    
    

    上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:

    
    results = 
    for url in urls: 
    results.append(urllib2.urlopen(url))
    
    

    map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。

    为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。

    在 Python 中有个两个库包含了 map 函数: multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.

    这里多扯两句: multiprocessing.dummy? mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!

    dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。
    所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。

    动手尝试

    使用下面的两行代码来引用包含并行化 map 函数的库:

    
    from multiprocessing import Pool
    from multiprocessing.dummy import Pool as ThreadPool
    
    

    实例化 Pool 对象:

    
    pool = ThreadPool
    
    

    这条简单的语句替代了 example2.py 中 buildworkerpool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。

    Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。

    一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。

    
    pool = ThreadPool(4) # Sets the pool size to 4
    
    

    线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

    创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py

    
    import urllib2 
    from multiprocessing.dummy import Pool as ThreadPool
    
    urls = [
    'http://www.python.org', 
    'http://www.python.org/about/',
    'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
    'http://www.python.org/doc/',
    'http://www.python.org/download/',
    'http://www.python.org/getit/',
    'http://www.python.org/community/',
    'https://wiki.python.org/moin/',
    'http://planet.python.org/',
    'https://wiki.python.org/moin/LocalUserGroups',
    'http://www.python.org/psf/',
    'http://docs.python.org/devguide/',
    'http://www.python.org/community/awards/'
    # etc.. 
    ]
    
    # Make the Pool of workers
    pool = ThreadPool(4) 
    # Open the urls in their own threads
    # and return the results
    results = pool.map(urllib2.urlopen, urls)
    #close the pool and wait for the work to finish 
    pool.close 
    pool.join
    实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。
    
    # results = 
    # for url in urls:
    # result = urllib2.urlopen(url)
    # results.append(result)
    
    # # ------- VERSUS ------- #
    
    # # ------- 4 Pool ------- # 
    # pool = ThreadPool(4) 
    # results = pool.map(urllib2.urlopen, urls)
    
    # # ------- 8 Pool ------- #
    
    # pool = ThreadPool(8)
    
    # # ------- 13 Pool ------- #
    
    # pool = ThreadPool(13) 
    结果:
    
    # Single thread: 14.4 Seconds 
    # 4 Pool: 3.1 Seconds
    # 8 Pool: 1.4 Seconds
    # 13 Pool: 1.3 Seconds
    
    

    很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。

    另一个真实的例子

    **生成上千张图片的缩略图 **

    这是一个 CPU 密集型的任务,并且十分适合进行并行化。

    基础单进程版本

    
    import os 
    import PIL
    
    from multiprocessing import Pool 
    from PIL import Image
    
    SIZE = (75,75)
    SAVE_DIRECTORY = 'thumbs'
    
    defget_image_paths(folder):
    return (os.path.join(folder, f) 
    for f in os.listdir(folder) 
    if'jpeg'in f)
    
    defcreate_thumbnail(filename):
    im = Image.open(filename)
    im.thumbnail(SIZE, Image.ANTIALIAS)
    base, fname = os.path.split(filename) 
    save_path = os.path.join(base, SAVE_DIRECTORY, fname)
    im.save(save_path)
    
    if __name__ == '__main__':
    folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
    os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
    
    images = get_image_paths(folder)
    
    for image in images:
    create_thumbnail(Image)
    
    

    上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

    这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。

    如果我们使用 map 函数来代替 for 循环:

    5.6 秒!

    虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。

    到这里,我们就实现了(基本)通过一行 Python 实现并行化。

    如果大家如果在自学遇到困难,想找一个Python学习环境,可以加入我们的Python学习圈,自己是一名高级python开发工程师,这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、人工智能、机器学习等。送给正在学习python的小伙伴!每天会准时的讲一些项目实战案例,分享一些学习的方法和需要注意的小细节,我们的python学习交流q–u--n【 784758214 】,这里是python学习者聚集地,欢迎初学和进阶中的小伙伴!

    点击:加入

    相关文章

      网友评论

        本文标题:一行 Python 代码实现并行,骚技能,Get!

        本文链接:https://www.haomeiwen.com/subject/ubmxgqtx.html