前一段时间有朋友问了下面的这个问题,我给出的回答是这样的:
image其实上面回答的方法调用也都是基于以前对runtime的理解,和自己试验出来的结果,但是,回答完这个问题之后,抱着探究到底的精神(其实是这几天产品没提什么需求,有点儿闲),问了自己一个问题:你怎么知道是底层调用的是这几个方法??。。。又是一番查资料,验证问题。。。下面正式开始分析:
- 首先新建一个Person类,代码如下:
Person.h
#import <Foundation/Foundation.h>
@interface Person : NSObject
- (void)eat;
@end
Person.m
#import "Person.h"
@implementation Person
- (void)eat{
NSLog(@"Person eat=======");
}
@end
很简单的一个类
在main函数里面调用eat
方法:
Person *p = [[Person alloc] init];
[p eat];
将main.m
代码转换成c++代码:
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m -o main.cpp
在main.cpp
文件当中查看底层实现:
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
Person *p = ((Person *(*)(id, SEL))(void *)objc_msgSend)((id)((Person *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("Person"), sel_registerName("alloc")), sel_registerName("init"));
((void (*)(id, SEL))(void *)objc_msgSend)((id)p, sel_registerName("eat"));
}
return 0;
}
通过这些代码我们发现,OC中方法调用本质上就是给对象发消息,上面给对象发消息的代码可以简写成:
objc_msgSend(p, @selector(eat));
上面方法调用的意思就是:给p
对象发送名为eat
的消息,所以OC中给对象发消息本质上都是调用objc_msgSend
方法,接着看下苹果官方文档对这个方法的定义(我是用的Dash查看的):
-
self
:指向接收消息的类实例的指针。简单来说就是消息的接收者。 -
op
:处理消息的方法选择器,也就是我们常见的@selector()
。 -
...
:包含方法参数的可变参数列表,
翻译如下:
当遇到方法调用时,编译器生成对其中一个函数的调用。当向superclass发消息的时候调用的是objc_msgSendSuper
,向其他对象发消息的时候调用objc_msgSend
,方法返回值是一个结构体的时候调用的是objc_msgSendSuper_stret
和objc_msgSend_stret
。
接下来我们再看下objc_msgSend
的底层实现,objc 源码,发现底层是用汇编代码实现的(表示很蛋疼):
ENTRY _objc_msgSend
UNWIND _objc_msgSend, NoFrame
MESSENGER_START
NilTest NORMAL
GetIsaFast NORMAL // r10 = self->isa
CacheLookup NORMAL, CALL // calls IMP on success
NilTestReturnZero NORMAL
GetIsaSupport NORMAL
// cache miss: go search the method lists
LCacheMiss:
// isa still in r10
MESSENGER_END_SLOW
jmp __objc_msgSend_uncached
END_ENTRY _objc_msgSend
由于本人汇编就懂几个简单的指令,所以就做简单分析:
首先,GetIsaFast
获取对象的isa指针,接着通过CacheLookup
从缓存查找方法的实现,会调用cache_getImp(Class cls, SEL sel)
,如果缓存中没有查到也就是cache miss
,会跳到__objc_msgSend_uncached
方法:
STATIC_ENTRY __objc_msgSend_uncached
UNWIND __objc_msgSend_uncached, FrameWithNoSaves
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band r10 is the searched class
// r10 is already the class to search
MethodTableLookup NORMAL // r11 = IMP
jmp *%r11 // goto *imp
END_ENTRY __objc_msgSend_uncached
在这个方法里面又会调用MethodTableLookup
查找方法列表:
.macro MethodTableLookup
push %rbp
mov %rsp, %rbp
sub $$0x80+8, %rsp // +8 for alignment
movdqa %xmm0, -0x80(%rbp)
push %rax // might be xmm parameter count
movdqa %xmm1, -0x70(%rbp)
push %a1
movdqa %xmm2, -0x60(%rbp)
push %a2
movdqa %xmm3, -0x50(%rbp)
push %a3
movdqa %xmm4, -0x40(%rbp)
push %a4
movdqa %xmm5, -0x30(%rbp)
push %a5
movdqa %xmm6, -0x20(%rbp)
push %a6
movdqa %xmm7, -0x10(%rbp)
// _class_lookupMethodAndLoadCache3(receiver, selector, class)
...
...
省略
在MethodTableLookup
里面又调用了_class_lookupMethodAndLoadCache3
方法:
/***********************************************************************
* _class_lookupMethodAndLoadCache.
* Method lookup for dispatchers ONLY. OTHER CODE SHOULD USE lookUpImp().
* This lookup avoids optimistic cache scan because the dispatcher
* already tried that.
**********************************************************************/
IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
return lookUpImpOrForward(cls, sel, obj,
YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}
接下来看一下lookUpImpOrForward
的实现
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.read();
if (!cls->isRealized()) {
// Drop the read-lock and acquire the write-lock.
// realizeClass() checks isRealized() again to prevent
// a race while the lock is down.
runtimeLock.unlockRead();
runtimeLock.write();
realizeClass(cls);
runtimeLock.unlockWrite();
runtimeLock.read();
}
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
retry:
runtimeLock.assertReading();
// Try this class's cache.
imp = cache_getImp(cls, sel);
if (imp) goto done;
// Try this class's method lists.
{
Method meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
}
// Try superclass caches and method lists.
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
}
// No implementation found. Try method resolver once.
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlockRead();
return imp;
}
我们重点看// No implementation found. Try method resolver once.
下面的代码,如果依然没有找到方法的实现,会调用_class_resolveMethod
方法:
void _class_resolveMethod(Class cls, SEL sel, id inst)
{
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
_class_resolveInstanceMethod(cls, sel, inst);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
_class_resolveClassMethod(cls, sel, inst);
if (!lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
_class_resolveInstanceMethod(cls, sel, inst);
}
}
}
在这个方法里面,我们可以清楚地看到,首先会判断该对象是否是元类对象,如果不是,会调用_class_resolveInstanceMethod
方法,否则会调用_class_resolveClassMethod
方法。如果还没有找到对应的IMP方法实现:
// No implementation found, and method resolver didn't help.
// Use forwarding.
接下来就会用到消息转发,调用这个方法_objc_msgForward_impcache
/********************************************************************
*
* id _objc_msgForward(id self, SEL _cmd,...);
*
* _objc_msgForward and _objc_msgForward_stret are the externally-callable
* functions returned by things like method_getImplementation().
* _objc_msgForward_impcache is the function pointer actually stored in
* method caches.
*
********************************************************************/
STATIC_ENTRY __objc_msgForward_impcache
// Method cache version
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band condition register is NE for stret, EQ otherwise.
MESSENGER_START
nop
MESSENGER_END_SLOW
jne __objc_msgForward_stret
jmp __objc_msgForward
END_ENTRY __objc_msgForward_impcache
ENTRY __objc_msgForward
// Non-stret version
movq __objc_forward_handler(%rip), %r11
jmp *%r11
END_ENTRY __objc_msgForward
ENTRY __objc_msgForward_stret
// Struct-return version
movq __objc_forward_stret_handler(%rip), %r11
jmp *%r11
END_ENTRY __objc_msgForward_stret
...
...
省略
从description可以看到__objc_msgForward_impcache
实际上是一个存储在方法缓存当中的函数指针,当某种类型的对象处理消息的过程中,无论怎样都找不到对应的IMP实现时,会将它作为sel对应的imp记入缓存。所以,从严格意义上来讲_class_resolveInstanceMethod
和_class_resolveClassMethod
并不是由__objc_msgForward_impcache
触发的,并不能算作消息转发的后续步骤,消息转发后,该对象如果再次遇到同名消息是,会直接从缓存中找到对应的IMP,即_objc_msgForward_impcache
,此时我们需要重写- (id)forwardingTargetForSelector:(SEL)aSelector
方法,重定向到别的类当中找到方法的实现。
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
官方文档截图:
image
主要看下官方文档里面的Discussion:
image
官方文档写的非常清楚:当你只想将消息重定向到另一个类时,用这个方法非常有用,因为它比常规的转发快一个数量级,他转发的目标是捕获NSInvocation
。也有人将这种方式称为Fast Forwarding
,因为这一步不会创建NSInvocation
对象。
今天先写这么多,还没完呢,上网查了好多资料,好多网上资料苹果的源代码都是老的,跟最新代码不太一样,也费了我很多时间,下一篇文章将会介绍如何通过regular forwarding
也有人叫Normal Forwarding
,动态添加方法实现。。。。
References:
网友评论