AdaBoostDemo
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles
#用make_gaussian_quantiles生成多组多维正态分布的数据
#这里生成2维正态分布,设定样本数1000,协方差2
x1,y1=make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, shuffle=True, random_state=1)
#为了增加样本分布的复杂度,再生成一个数据分布
x2,y2=make_gaussian_quantiles(mean=(3,3), cov=1.5, n_samples=300, n_features=2, n_classes=2, shuffle=True, random_state=1)
#合并
X=np.vstack((x1,x2))
y=np.hstack((y1,1-y2))
#plt.scatter(X[:,0],X[:,1],c=Y)
#plt.show()
#设定弱分类器CART
weakClassifier=DecisionTreeClassifier(max_depth=1)
#构建模型。
clf=AdaBoostClassifier(base_estimator=weakClassifier,algorithm='SAMME',n_estimators=300,learning_rate=0.8)
clf.fit(X, y)
#绘制分类效果
x1_min=X[:,0].min()-1
x1_max=X[:,0].max()+1
x2_min=X[:,1].min()-1
x2_max=X[:,1].max()+1
x1_,x2_=np.meshgrid(np.arange(x1_min,x1_max,0.02),np.arange(x2_min,x2_max,0.02))
y_=clf.predict(np.c_[x1_.ravel(),x2_.ravel()])
y_=y_.reshape(x1_.shape)
plt.contourf(x1_,x2_,y_,cmap=plt.cm.Paired)
plt.scatter(X[:,0],X[:,1],c=y)
plt.show()
AdaBoostFirstTry
'''
在scikit-learn库中,有AdaBoostRegression(回归)和AdaBoostClassifier(分类)两个
在对和AdaBoostClassifier进行调参时,主要是对两部分进行调参:1)AdaBoost框架调参;2)弱分类器调参
'''
#导包
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.ensemble import AdaBoostClassifier
#载入数据,sklearn中自带的iris数据集
iris=load_iris()
'''
AdaBoostClassifier参数解释
base_estimator:弱分类器,默认是CART分类树:DecisionTressClassifier
algorithm:在scikit-learn实现了两种AdaBoost分类算法,即SAMME和SAMME.R,
SAMME就是原理篇介绍到的AdaBoost算法,指Discrete AdaBoost
SAMME.R指Real AdaBoost,返回值不再是离散的类型,而是一个表示概率的实数值,算法流程见后文
两者的主要区别是弱分类器权重的度量,SAMME使用了分类效果作为弱分类器权重,SAMME.R使用了预测概率作为弱分类器权重。
SAMME.R的迭代一般比SAMME快,默认算法是SAMME.R。因此,base_estimator必须使用支持概率预测的分类器。
loss:这个只在回归中用到,不解释了
n_estimator:最大迭代次数,默认50。在实际调参过程中,常常将n_estimator和学习率learning_rate一起考虑
learning_rate:每个弱分类器的权重缩减系数v。f_k(x)=f_{k-1}*a_k*G_k(x)。较小的v意味着更多的迭代次数,默认是1,也就是v不发挥作用。
另外的弱分类器的调参,弱分类器不同则参数不同,这里不详细叙述
'''
#构建模型
clf=AdaBoostClassifier(n_estimators=100) #弱分类器个数设为100
scores=cross_val_score(clf,iris.data,iris.target)
print(scores.mean())
GBDT
'''
GBDT有分类和回归,回归是GradientBoostingRegressor
示例给出的是分类
GradientBoostingClassifier支持二分类和多分类。
'''
from sklearn.datasets import make_hastie_10_2
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.grid_search import GridSearchCV
#取样本
X,y=make_hastie_10_2(random_state=42)
'''
调参:
loss:损失函数。有deviance和exponential两种。deviance是采用对数似然,exponential是指数损失,后者相当于AdaBoost。
n_estimators:最大弱学习器个数,默认是100,调参时要注意过拟合或欠拟合,一般和learning_rate一起考虑。
learning_rate:步长,即每个弱学习器的权重缩减系数,默认为0.1,取值范围0-1,当取值为1时,相当于权重不缩减。较小的learning_rate相当于更多的迭代次数。
subsample:子采样,默认为1,取值范围(0,1],当取值为1时,相当于没有采样。小于1时,即进行采样,按比例采样得到的样本去构建弱学习器。这样做可以防止过拟合,但是值不能太低,会造成高方差。
init:初始化弱学习器。不使用的话就是第一轮迭代构建的弱学习器.如果没有先验的话就可以不用管
由于GBDT使用CART回归决策树。以下参数用于调优弱学习器,主要都是为了防止过拟合
max_feature:树分裂时考虑的最大特征数,默认为None,也就是考虑所有特征。可以取值有:log2,auto,sqrt
max_depth:CART最大深度,默认为None
min_sample_split:划分节点时需要保留的样本数。当某节点的样本数小于某个值时,就当做叶子节点,不允许再分裂。默认是2
min_sample_leaf:叶子节点最少样本数。如果某个叶子节点数量少于某个值,会同它的兄弟节点一起被剪枝。默认是1
min_weight_fraction_leaf:叶子节点最小的样本权重和。如果小于某个值,会同它的兄弟节点一起被剪枝。一般用于权重变化的样本。默认是0
min_leaf_nodes:最大叶子节点数
'''
#确定调优参数
parameters = {
'n_estimators':[50,100,150],
'learning_rate':[0.5,1,1.5],
'max_depth':[1,2,3]
}
#构建模型,调优,确定十折交叉验证
estimator=GradientBoostingClassifier(random_state=42)
best_clf=GridSearchCV(estimator=estimator, param_grid=parameters, cv=10).fit(X, y)
print(best_clf.best_params_,best_clf.best_score_ )
网友评论